已知函数f(x)=23sinxcosx-2sin2x+1.(1)若x∈R,求函数f(x)的单调增区间;(2)求函数f(x)在区间[0,π2]上的最小值及此时x的值;(3)若f(x0)=65,x0∈[π

题目简介

已知函数f(x)=23sinxcosx-2sin2x+1.(1)若x∈R,求函数f(x)的单调增区间;(2)求函数f(x)在区间[0,π2]上的最小值及此时x的值;(3)若f(x0)=65,x0∈[π

题目详情

已知函数f(x)=2
3
sinxcosx-2sin2x+1

(1)若x∈R,求函数f(x)的单调增区间;
(2)求函数f(x)在区间[0,
π
2
]
上的最小值及此时x的值;
(3)若f(x0)=
6
5
x0∈[
π
4
π
2
]
,求sin2x0的值.
题型:解答题难度:中档来源:不详

答案

(1)∵函数f(x)=2
3
sinxcosx-2sin2x+1
=
3
sin2x+cos2x=2sin(2x+class="stub"π
6
),
令 2kπ-class="stub"π
2
≤2x+class="stub"π
6
≤2kπ+class="stub"π
2
,k∈z,解得 kπ-class="stub"π
3
≤x≤kπ+class="stub"π
6
,k∈z.
故函数f(x)的单调增区间为[kπ-class="stub"π
3
,kπ+class="stub"π
6
],k∈z.
(2)∵x∈[0,class="stub"π
2
]
,∴2x+class="stub"π
6
[class="stub"π
6
 ,class="stub"7π
6
]
,故当2x+class="stub"π
6
=class="stub"7π
6
,即x=class="stub"π
2
时,函数f(x)取得最小值为-1.
(3)若f(x0)=class="stub"6
5
x0∈[class="stub"π
4
,class="stub"π
2
]
,则有2sin(2x0+class="stub"π
6
)=class="stub"6
5
,sin(2x0+class="stub"π
6
)=class="stub"3
5

再由(2x0+class="stub"π
6
)为钝角可得cos(2x0+class="stub"π
6
)=-class="stub"4
5

∴sin2x0 =sin[(2x0+class="stub"π
6
)-class="stub"π
6
]=sin(2x0+class="stub"π
6
)cosclass="stub"π
6
-cos(2x0+class="stub"π
6
)sinclass="stub"π
6
=class="stub"3
5
×
3
2
-class="stub"-4
5
×class="stub"1
2
=
3
3
+4
10

更多内容推荐