已知函数f(x)=2cos2x+cos(2x+π3)(1)在锐角△ABC中,a,b,c分别是角A,B,C的对边;若f(A)=-12,b=3,sin(A+C)=34sinC,求△ABC的面积.(2)若f

题目简介

已知函数f(x)=2cos2x+cos(2x+π3)(1)在锐角△ABC中,a,b,c分别是角A,B,C的对边;若f(A)=-12,b=3,sin(A+C)=34sinC,求△ABC的面积.(2)若f

题目详情

已知函数f(x)=2cos2x+cos(2x+
π
3

(1)在锐角△ABC中,a,b,c分别是角A,B,C的对边;若f(A)=-
1
2
,b=3
,sin(A+C)=
3
4
sinC,求△ABC的面积.
(2)若f(α)=
3
3
+1,0<α<
π
6
,求sin2α的值.
题型:解答题难度:中档来源:不详

答案

(1)函数f(x)=2cos2x+cos(2x+class="stub"π
3
)=1+cos2x+class="stub"1
2
cos2x-
3
2
sin2x=1+class="stub"3
2
cos2x-
3
2
sin2x=
3
cos(2x+class="stub"π
6
)+1
f(A)=-class="stub"1
2
,∴
3
cos(2A+class="stub"π
6
)+1=-class="stub"1
2
,∴cos(2A+class="stub"π
6
)=-
3
2

∵A∈(0,class="stub"π
2
),∴2A+class="stub"π
6
∈(class="stub"π
6
,class="stub"7π
6
),∴2A+class="stub"π
6
=class="stub"5π
6
,即A=class="stub"π
3

又因为sin(A+C)=class="stub"3
4
sinC,即sinB=class="stub"3
4
sinC,由正弦定理得b=class="stub"3
4
c

又b=3,∴c=4.
S△ABC=class="stub"1
2
bcsinA=3
3

(2)f(α)=
3
cos(2α+class="stub"π
6
)+1=
3
3
+1,则cos(2α+class="stub"π
6
)=class="stub"1
3

∵0<α<class="stub"π
6
,∴0<2α+class="stub"π
6
class="stub"π
3
,∴sin(2α+class="stub"π
6
)=
2
2
3

sin2α=sin(2α+class="stub"π
6
-class="stub"π
6
)=sin(2α+class="stub"π
6
)cosclass="stub"π
6
-sinclass="stub"π
6
cos(2α+class="stub"π
6
)=
2
6
-1
6

更多内容推荐