设f(x)=cosxcos(30°-x),则f(1°)+f(2°)+…+f(60°)=______.-数学

题目简介

设f(x)=cosxcos(30°-x),则f(1°)+f(2°)+…+f(60°)=______.-数学

题目详情

f(x)=
cosx
cos(30°-x)
,则f(1°)+f(2°)+…+f(60°)=______.
题型:填空题难度:中档来源:不详

答案

f(x)=class="stub"cosx
cos(30°-x)

∴f(x)+f(60°-x)=class="stub"cox
cos(30°-x)
+
cos(60°-x)
cos(x-30°)

=
cosx+cos(60°-x)
cos(x-30°)

=
2cos(30°)cos(x-30°)
cos(x-30°)

=
3

令s=f(1°)+f(2°)+…+f(59°),…①
s=f(59°)+f(58°)+…+f(2°)+f(1°),…②
①+②得:2s=[f(1°)+f(59°)]+[f(2°)+f(58°))]+…+[f(59°)+f(1°)]
=59
3

s=class="stub"59
2
3
,即f(1°)+f(2°)+…+f(59°)=
59
3
2

又f(60°)=class="stub"cos60°
cos(30°-60°)
=
class="stub"1
2
3
2
=
3
3

则f(1°)+f(2°)+…+f(59°)+f(60°)=
59
3
2
+
3
3
=
179
3
6

故答案为:
179
3
6

更多内容推荐