已知函数f(x)=sinx3cosx-x(0<x<π2).(Ⅰ)求f′(π4);(Ⅱ)求证:不等式sin3x>x3cosx在x∈(0,π2)上恒成立;(Ⅲ)求g(x)=1sin2x-1x2在x∈(0,

题目简介

已知函数f(x)=sinx3cosx-x(0<x<π2).(Ⅰ)求f′(π4);(Ⅱ)求证:不等式sin3x>x3cosx在x∈(0,π2)上恒成立;(Ⅲ)求g(x)=1sin2x-1x2在x∈(0,

题目详情

已知函数f(x)=
sinx
3cosx
-x(0<x<
π
2
).
(Ⅰ)求f′(
π
4
)

(Ⅱ)求证:不等式sin3x>x3cosx在x∈(0,
π
2
)
上恒成立;
(Ⅲ)求g(x)=
1
sin2x
-
1
x2
x∈(0,
π
4
]
的最大值.
题型:解答题难度:中档来源:不详

答案

(本小题满分14分)
(Ⅰ)∵f′(x)=
cosx
3cosx
-sinx(
3cosx
)′
3cos2x
-1=
3cos2x+sin2x
3cosx
3cosx
-1
=cosclass="stub"2
3
x+class="stub"1
3
sin2xcos-class="stub"4
3
x-1
…(3分)
f′(class="stub"π
4
)=cosclass="stub"2
3
class="stub"π
4
+class="stub"1
3
sin2class="stub"π
4
cos-class="stub"4
3
class="stub"π
4
-1=class="stub"2
3
34
-1
…(5分)
(Ⅱ)由(Ⅰ)知f′(x)=cosclass="stub"2
3
x+class="stub"1
3
sin2xcos-class="stub"4
3
x-1
,其中f(0)=0
令G(x)=f'(x),则G′(x)=class="stub"2
3
cos-class="stub"1
3
x•(-sinx)+class="stub"1
3
[2sinxcosxcos-class="stub"4
3
x+sin2x•(-class="stub"4
3
)•cos-class="stub"7
3
x•(-sinx)]

=class="stub"4
9
sin3xcos-class="stub"7
3
x>0
x∈(0,class="stub"π
2
)
上恒成立
故G(x)在(0,class="stub"π
2
)
上为增函数,故f′(x)>f′(0)=0,…(8分)
所以f(x)在(0,class="stub"π
2
)
上为增函数,故f(x)>f(0)=0,
即sin3x>x3cosx,…(10分)
(Ⅲ)由(Ⅱ)可知sin3x-x3cosx>0在x∈(0,class="stub"π
4
]
上恒成立.
则g′(x)=
2(sin3x-x3cosx)
x3sin3x
>0在x∈(0,class="stub"π
4
]
上恒成立.   …(12分)
即g(x)在x∈(0,class="stub"π
4
]
单调递增
于是g(x)max=g(class="stub"π
4
)=2-class="stub"16
π2
…(14分)

更多内容推荐