函数f(x)=cos(-x2)+cos(4k+12π-x2),k∈Z,x∈R.(1)求f(x)的周期;(2)若f(α)=2105,α∈(0,π2),求sin(α+π6)的值.-数学

题目简介

函数f(x)=cos(-x2)+cos(4k+12π-x2),k∈Z,x∈R.(1)求f(x)的周期;(2)若f(α)=2105,α∈(0,π2),求sin(α+π6)的值.-数学

题目详情

函数f(x)=cos(-
x
2
)+cos(
4k+1
2
π-
x
2
),k∈Z,x∈R

(1)求f(x)的周期;
(2)若f(α)=
2
10
5
,α∈(0,
π
2
)
,求sin(α+
π
6
)
的值.
题型:解答题难度:中档来源:不详

答案

(1)∵f(x)=cosclass="stub"x
2
+cos(2kπ+class="stub"π
2
-class="stub"x
2
)
=cosclass="stub"x
2
+sinclass="stub"x
2
=
2
sin(class="stub"x
2
+class="stub"π
4
)
(k∈Z).
∴函数f(x)的周期T=class="stub"2π
class="stub"1
2
=4π.
(2)由f(α)=
2
10
5
,得sinclass="stub"α
2
+cosclass="stub"α
2
=
2
10
5

两边平方并整理得1+sinα=class="stub"8
5
,∴sinα=class="stub"3
5

α∈(0,class="stub"π
2
)
,∴cosα=
1-(class="stub"3
5
)2
=class="stub"4
5

∴sin(α+class="stub"π
6
)=sinαcosclass="stub"π
6
+cosαsinclass="stub"π
6
=class="stub"3
5
×
3
2
+class="stub"4
5
×class="stub"1
2
=
3
3
+4
10

更多内容推荐