已知函数f(x)=3sin(2x-π6)+2sin2(x-π12)(x∈R).(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)若f(x)=1-2且x∈[-π4,π4],求x的值;(Ⅲ)求函数f(x)的单调递增

题目简介

已知函数f(x)=3sin(2x-π6)+2sin2(x-π12)(x∈R).(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)若f(x)=1-2且x∈[-π4,π4],求x的值;(Ⅲ)求函数f(x)的单调递增

题目详情

已知函数f(x)=
3
sin(2x-
π
6
)+2sin2(x-
π
12
) (x∈R).
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若f(x)=1-
2
且x∈[-
π
4
π
4
],求x的值;
(Ⅲ)求函数f(x)的单调递增区间.
题型:解答题难度:中档来源:静海县一模

答案

(Ⅰ)∵f(x)=
3
sin(2x-class="stub"π
6
)+2sin2(x-class="stub"π
12

=
3
sin(2x-class="stub"π
6
)+1-cos(2x-class="stub"π
6

=2sin(2x-class="stub"π
3
)+1,
∴f(x)的最小正周期T=class="stub"2π
2
=π;
(Ⅱ)∵f(x)=2sin(2x-class="stub"π
3
)+1=1-
2

∴sin(2x-class="stub"π
3
)=-
2
2

∵x∈[-class="stub"π
4
class="stub"π
4
],
∴2x-class="stub"π
3
∈[-class="stub"5π
6
class="stub"π
6
],
∴2x-class="stub"π
3
=-class="stub"3π
4
或2x-class="stub"π
3
=-class="stub"π
4

∴x=-class="stub"5π
24
或x=class="stub"π
24

(Ⅲ)由2kπ-class="stub"π
2
≤2x-class="stub"π
3
≤2kπ+class="stub"π
2
得:kπ-class="stub"π
12
≤x≤kπ+class="stub"5π
12
,k∈Z.
∴函数f(x)的单调递增区间为[kπ-class="stub"π
12
,kπ+class="stub"5π
12
](k∈Z).

更多内容推荐