已知:sin(α-β2)=45,cos(α2-β)=-1213,且α-β2与α2-β分别为第二、三象限角,求:tanα+β2的值.-数学

题目简介

已知:sin(α-β2)=45,cos(α2-β)=-1213,且α-β2与α2-β分别为第二、三象限角,求:tanα+β2的值.-数学

题目详情

已知:sin(α-
β
2
)=
4
5
cos(
α
2
-β)=-
12
13
,且α-
β
2
α
2
分别为第二、三象限角,
求:tan
α+β
2
的值.
题型:解答题难度:中档来源:不详

答案

由于α-class="stub"β
2
与class="stub"α
2
分别为第二、三象限角,sin(α-class="stub"β
2
)=class="stub"4
5
cos(class="stub"α
2
-β)=-class="stub"12
13

∴cos(α-class="stub"β
2
 )=-class="stub"3
5
,sin(class="stub"α
2
 )=-class="stub"5
13

∴tan(α-class="stub"β
2
 )=
sin(α-class="stub"β
2
)
cos(α-class="stub"β
2
)
=-class="stub"4
3
,tan(class="stub"α
2
 )=
sin(class="stub"α
2
-β)
cos(class="stub"α
2
-β)
=class="stub"5
12

tanclass="stub"α+β
2
=tan[(α-class="stub"β
2
) - (class="stub"α
2
-β)
]=
tan(α-class="stub"β
2
)-(class="stub"α
2
-β)
1+tan(α-class="stub"β
2
)tan(class="stub"α
2
-β)
=
-class="stub"4
3
-class="stub"5
12
1+(-class="stub"4
3
)class="stub"5
12
=-class="stub"63
16

更多内容推荐