定义在R上的函数y=f(x)既是奇函数又是减函数,若s,t满足不等式f(s2-2s)+f(2t-t2)<0.则当1≤s≤4时,ts的取值范围是()A.[-14,1]B.(-14,1)C.[-12,1]

题目简介

定义在R上的函数y=f(x)既是奇函数又是减函数,若s,t满足不等式f(s2-2s)+f(2t-t2)<0.则当1≤s≤4时,ts的取值范围是()A.[-14,1]B.(-14,1)C.[-12,1]

题目详情

定义在R上的函数y=f(x)既是奇函数又是减函数,若s,t满足不等式f(s2-2s)+f(2t-t2)<0.则当1≤s≤4时,
t
s
的取值范围是(  )
A.[-
1
4
,1
]
B.(-
1
4
,1
C.[-
1
2
,1
]
D.(-
1
2
,1
题型:单选题难度:偏易来源:不详

答案

∵f(s2-2s)+f(2t-t2)<0,
∴f(s2-2s)<-f(2t-t2),
由f(x)为奇函数得f(s2-2s)<f(t2-2t),
又定义在R上的函数y=f(x)是减函数,
从而t2-2t<s2-2s,化简得(t-s)(t+s-2)<0,
又1≤s≤4,
故2-s<t<s,从而 class="stub"2
s
-1<class="stub"t
s
<1,而 class="stub"2
s
-1∈[-class="stub"1
2
,1],
class="stub"t
s
∈(-class="stub"1
2
,1).
故选D.

更多内容推荐