已知数列{an}的各项均为正值,a1=1,对任意n∈N*,an+12-1=4an(an+1),bn=log2(an+1)都成立.(1)求数列{an}、{bn}的通项公式;(2)令cn=an•bn,求数

题目简介

已知数列{an}的各项均为正值,a1=1,对任意n∈N*,an+12-1=4an(an+1),bn=log2(an+1)都成立.(1)求数列{an}、{bn}的通项公式;(2)令cn=an•bn,求数

题目详情

已知数列{an}的各项均为正值,a1=1,对任意n∈N*,an+12-1=4an(an+1),bn=log2(an+1)都成立.
(1)求数列{an}、{bn}的通项公式;
(2)令cn=an•bn,求数列{cn}的前n项和Tn
(3)当k>7且k∈N*时,证明对任意n∈N*,都有
1
bn
+
1
bn+1
+
1
bn+2
+…+
1
bnk-1
3
2
成立.
题型:解答题难度:中档来源:不详

答案

(1)由n∈N*
a2n+1
-1=4an(an+1)
,得(an+1+2an+1)(an+1-2an-1)=0
∵数列{an}的各项均为正值,an+1+2an+1>0,∴an+1=2an+1,整理为an+1+1=2(an+1)
又a1+1=2≠0∴数列{an+1}为等比数列,
an+1=(a1+1)•2n-1=2n∴数列{an}的通项公式an=2n-1
数列{bn}的通项公式bn=log2(2n-1+1)=n
(2)由(1)cn=an•bn=n•(2n-1)
所以Tn=1•21+2•22+3•23+…+n•2n-(1+2+3+…+n)
令Tn′=1•21+2•22+3•23+…+n•2n①
则2Tn′=1•22+2•23+3•24+…+n•2n+1②
①-②得-Tn′=1•21+22+23+24+…++2n-n•2n+1=2n+1-2-n•2n+1=(1-n)2n+1-2
(3)法1:设S=class="stub"1
bn
+class="stub"1
bn+1
+class="stub"1
bn+2
+…+class="stub"1
bnk-1
=class="stub"1
n
+class="stub"1
n+1
+class="stub"1
n+2
+…+class="stub"1
nk-1

2S=(class="stub"1
n
+class="stub"1
nk-1
)+(class="stub"1
n+1
+class="stub"1
nk-2
)+(class="stub"1
n+2
+class="stub"1
nk-3
)+…+(class="stub"1
nk-1
+class="stub"1
n
)

当x>0,y>0时,x+y≥2
xy
,class="stub"1
x
+class="stub"1
y
≥2
class="stub"1
xy

(x+y)(class="stub"1
x
+class="stub"1
y
)≥4
class="stub"1
x
+class="stub"1
y
≥class="stub"4
x+y
当且仅当x=y时等号成立.
∴上述(1)式中,k>7,n>0,n+1,n+2,…,nk-1全为正,
2S>class="stub"4
n+nk-1
+class="stub"4
n+1+nk-2
+class="stub"4
n+2+nk-3
+…+class="stub"4
nk-1+n
=
4n(k-1)
n+nk-1

S>
2(k-1)
1+k-class="stub"1
n
2(k-1)
k+1
=2(1-class="stub"2
k+1
)>2(1-class="stub"2
7+1
)=class="stub"3
2

法2∵k≥8,S≥class="stub"1
n
+class="stub"1
n+1
+…+class="stub"1
8n-1

=class="stub"1
n
+…+class="stub"1
2n-1
+class="stub"1
2n
+…+class="stub"1
3n-1
+class="stub"1
3n
+…+class="stub"1
4n-1
+…+class="stub"1
8n-1
>class="stub"1
2n-1
+…+class="stub"1
2n-1
+class="stub"1
3n-1
+…+class="stub"1
3n-1
+class="stub"1
4n-1
+…+class="stub"1
4n-1
+…+class="stub"1
8n-1
+…+class="stub"1
8n-1

=class="stub"n
2n-1
+class="stub"n
3n-1
+class="stub"n
4n-1
+…+class="stub"n
8n-1
>class="stub"1
2
+class="stub"1
3
+class="stub"1
4
+class="stub"1
5
+class="stub"1
6
+class="stub"1
7
+class="stub"1
8

=1+class="stub"1
4
+class="stub"1
5
+class="stub"1
7
+class="stub"1
8
=1+class="stub"83
140
+class="stub"1
8
>1+class="stub"1
2
=class="stub"3
2

更多内容推荐