优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 数列{an}中,a1=1,当n≥2时,an是(3-x)n的二项展开式中x的系数,设bn=3nan,Tn为数列{bn}的前n项和,则an=______,T99=______.-数学
数列{an}中,a1=1,当n≥2时,an是(3-x)n的二项展开式中x的系数,设bn=3nan,Tn为数列{bn}的前n项和,则an=______,T99=______.-数学
题目简介
数列{an}中,a1=1,当n≥2时,an是(3-x)n的二项展开式中x的系数,设bn=3nan,Tn为数列{bn}的前n项和,则an=______,T99=______.-数学
题目详情
数列{a
n
}中,a
1
=1,当n≥2时,a
n
是
(3-
x
)
n
的二项展开式中x的系数,设
b
n
=
3
n
a
n
,
T
n
为数列{b
n
}的前n项和,则a
n
=______,T
99
=______.
题型:填空题
难度:中档
来源:不详
答案
设
(3-
x
)
n
的二项展开式的通项公式为Tr+1=
C
rn
(-1)r•3n-r•
(
x
)
r
,
令r=2,则T3=
C
2n
3n-2x,
∴当n≥2时,an=
n(n-1)
2
•3n-2,
∴an=
1,n=1
n(n-1)
2
•3
n-2
,n≥2
又bn=
3
n
a
n
,数列{bn}的前n项和为Tn,
∴当n≥2时,bn=
3
n
3
n-2
•
n(n-1)
2
=
class="stub"18
n(n-1)
=18(
class="stub"1
n-1
-
class="stub"1
n
),又b1=3,
∴T99=3+18[(1-
class="stub"1
2
)+(
class="stub"1
2
-
class="stub"1
3
)+…+(
class="stub"1
98
-
class="stub"1
99
)]
=3+18(1-
class="stub"1
99
)
=3+
class="stub"196
11
=
class="stub"229
11
.
故答案为:
1,n=1
n(n-1)
2
•3
n-2
,n≥2
;
class="stub"229
11
.
上一篇 :
设数列{an}满足an≠0,a1=1,an=(1-
下一篇 :
设数列{an}的前n项和为Sn,且Sn2
搜索答案
更多内容推荐
(1002-992)+(982-972)+…+(22-12)=______.-数学
数列{an}的通项公式an=ncosnπ2,前n项和为Sn,则S2012=______.(a>b>0)-数学
已知数列{an}是等差数列,其前n项和为Sn,若a1a2a3=15,且3S1S3+15S3S5+5S5S1=35,则a2=______.-数学
已知数列{an}是公差为正数的等差数列,且a1+a2=1,a2•a3=10,那么数列{an}的前5项的和S5=______.-数学
已知函数f(x)=x3x+1,数列an满足a1=1,an+1=f(an)(n∈N*).(1)求数列{an}的通项公式;(2)记Sn=a1a2+a2a3+…+anan+1,求Sn.-数学
已知数列{an}的前n项和为Sn,且a1=4,Sn=nan+2-n(n-1)2,(n≥2,n∈N*).(I)求数列{an}的通项公式;(II)已知bn>an,(n≥2,n∈N*),求证:(1+1b2b
已知等差数列{an}中,a1=1,前10项和S10=100;(1)求数列{an}的通项公式;(2)设log2bn=an,证明{bn}为等比数列,并求{bn}的前四项之和.(3)设cn=bn+an,求{
已知正项数列{an}的前n项和为Sn,且an和Sn满足:4Sn=(an+1)2(n=1,2,3…),(1)求{an}的通项公式;(2)设bn=1an•an+1,求{bn}的前n项和Tn;(3)在(2)
已知数列{an}满足:a1=1,a2=2,对任意的正整数n都有an•an+1≠1,an•an+1•an+2=an+an+1+an+2,则a1+a2+a3+…+a2006=______.-数学
已知Sn是数列{an}的前n项和,且Sn=n2(n∈N*).(1)求{an}的通项公式;(2)令bn=1anan=1,Tn是数列{bn}的前n项和,试证明Tn<12.-数学
已知Sn是正项数列{an}的前n项和,且Sn是14与(an+1)2的等比中项.(1)求证:数列{an}是等差数列;(2)若bn=an2n,求数列{bn}的前n项和Tn;(3)若bn≤14m2-m-12
已知数列{an}的通项公式为an=2n-5,记前n项和为Sn.(1)求|a1|+|a2|+…+|a10|的值;(2)求数列{Sn}的最小项的值.-数学
已知数列{an}的通项公式an=(2n)2(2n-1)(2n+1),求它的前n项和.-数学
设数列{an}是以2为首项,1为公差的等差数列,{bn}是以1为首项,2为公比的等比数列,则ab1+ab2+…+ab10=()A.1033B.1034C.2057D.2058-数学
已知数列{an}满足a1=1,且an=2an-1+2n(n≥2且n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{an}的前n项之和Sn,求Sn,并证明:Sn2n>2n-3.-数学
已知等差数列{an}各项都不相同,前3项和为18,且a1、a3、a7成等比数列(1)求数列{an}的通项公式;(2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=2,求数列{1bn}的前
设无穷等差数列{an}的前n项和为Sn.(1)若数列首项为a1=32,公差d=1,求满足Sk2=(Sk)2的正整数k的值;(2)若Sn=n2,求通项an;(3)求所有无穷等差数列{an},使得对于一切
已知.abcd.=ad-bc,则.46810.+.12141618.+…+.2004200620082010.=()A.-2008B.2008C.2010D.-2010-数学
已知数列{an}的通项公式an=1n+n+1,若它的前n项和为10,则项数n为______.-数学
求和12-22+32-42+…+992-1002.-数学
11×4+14×7+17×10+…+1(3n-2)(3n+1)=()A.n3n+1B.n+13n+1C.2n-13n+1D.2n-23n+1-数学
设关于x的不等式:x2-x<2nx(n∈N*)的解集中整数的个数为an,数列{an}的前n项的和为Sn,则S100=______.-数学
公差不为零的等差数列{an}中,已知其前n项和为Sn,若S8=S5+45,且a4,a7,a12成等比数列(Ⅰ)求数列{an}的通项an(Ⅱ)当bn=1Sn时,求数列{bn}的前n和Tn.-数学
(2+12)+(4+14)+…+(2n+12n)=______.-数学
已知数列{an}中,a1=1,an+1=an2an+1(n∈N).(1)求数列{an}的通项公式an;(2)设:2bn=1an+1求数列{bnbn+1}的前n项的和Tn;(3)已知P=(1+b1)(1
已知单调递增的等比数列{an}满足a2+a3+a4=28,a3+2是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)设bn=-nan,求数列{bn}的前n项和Sn.-数学
已知数列{an}的前n项和Sn=2n2+n-1,数列{bn}满足b1+3b2+…+(2n-1)bn=(2n-3)•2n+1,求:数列{anbn}的前n项和Tn.-数学
已知数列{an}中an=n+1,又数列{bn}满足:nb1+(n-1)b2+…+2bn-1+bn=(910)n-1+(910)n-2+…+910+1.(1)求bn的表达式;(2)若cn=-an•bn,
在数列{an}中,a1=1,an+1=an+2n(1)求数列{an}的通项公式;(2)设bn=n(1+an),求数列{bn}的前n项和Sn.-数学
数列{an}的通项公式为an=1(n+1)(n+2),则该数列的前n项和Sn=______.-数学
已知数列{an}的前n项和Sn=10n-n2(n∈N*),又bn=|an|(n∈N*),求{bn}的前n项和Tn.-数学
已知等差数列{an}的前n项和为Sn,且a3=5,S15=225;等比数列{bn}满足:b3=a2+a3,b2b5=128(1)求数列{an}和{bn}的通项公式(2)记cn=an+bn求数列{cn}
若数列1,2cosθ,22cos2θ,23cos3θ,…,前100项之和为0,则θ的值是()A.kπ±π3(k∈Z)B.2kπ±π3(k∈Z)C.2kπ±2π3(k∈Z)D.以上答案均不对-数学
在数列{an}中,前n项和为Sn,且a1=1,a2=2,an+2=an+1+(-1)n,则S100=______.-数学
给定an=1n+1+n(n∈N*),则使a1+a2+…+ak为整数的最小正整数k的值是______.-数学
已知数列11×4,14×7,17×10,…,1(3n-2)(3n+1),…,(1)计算S1,S2,S3,S4;(2)猜想Sn的表达式,并用数学归纳法证明.-数学
(文科做)已知{an}的前n项和Sn=n2-n+1,则|a1|+|a2|+…+|a10|等于()A.91B.65C.61D.56-数学
已知数列{an}满足a1=1an=2an-1+1,n≥2,求{an}的通项公式及其前n项和Sn.-数学
数列{an}的通项公式是an=n,(n为奇数)2n2,(n为偶数),则数列的前2m(m为正整数)项和是______.-数学
数列1+12,2+14,3+18,…,n+12n,…的前n项和是______.-数学
设数列{an}的前n项和为Sn,且a1=1,Sn=nan-2n(n-1)(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)证明:1a1a2+1a2a3+…+1an-1an<14.-数学
设f(x)是定义在R上恒不为零的函数,对任意的实数x,y∈R,都有f(x)•f(y)=f(x+y),若a1=12,an=f(n),(n∈N*),则数列{an}的前n项和Sn的最小值是()A.34B.2
设曲线y=xn(n∈N*)与x轴及直线x=1围成的封闭图形的面积为an,设bn=anan+1,则b1+b2+…+b2012=()A.5031007B.20112012C.20122013D.20132
已知数列{an},Sn是数列{an}的前n项和,且Sn=n2+n+1,则an=______.-数学
在数列{an}中,对于任意的正整数n都有a1+a2+…+an=3n-1,则{an2}的前n项和为()A.9n-1B.9n-12C.9n-14D.49-数学
若数列{an}的前n项和Sn=2n-1,则a3=()A.2B.4C.6D.8-数学
已知数列{an}的通项公式是an=(-1)n(n+1),则a1+a2+a3+…+a10=()A.-55B.-5C.5D.55-数学
已知公差不为0的等差数列{an}的前n项和为Sn,且满足S5=3a5-2,又a1,a2,a5依次成等比数列,数列{bn}满足b1=-9,bn+1=bn+k2an+12,(n∈N+)其中k为大于0的常数
已知数列{an}的前n项和为Sn,Sn+1=4an-2,且a1=2.(Ⅰ)求证:对任意n∈N*,an+1-2an为常数C,并求出这个常数C;(Ⅱ)如果bn=1anan+1,求数列{bn}的前n项的和.
已知数列{an}的前n项和Sn满足Sn=2n-1,则当n≥2时,1a1+1a2+…+1an=______.-数学
返回顶部
题目简介
数列{an}中,a1=1,当n≥2时,an是(3-x)n的二项展开式中x的系数,设bn=3nan,Tn为数列{bn}的前n项和,则an=______,T99=______.-数学
题目详情
答案
令r=2,则T3=
∴当n≥2时,an=
∴an=
又bn=
∴当n≥2时,bn=
∴T99=3+18[(1-
=3+18(1-
=3+
=
故答案为: