数列{an}中,a1=1,当n≥2时,an是(3-x)n的二项展开式中x的系数,设bn=3nan,Tn为数列{bn}的前n项和,则an=______,T99=______.-数学

题目简介

数列{an}中,a1=1,当n≥2时,an是(3-x)n的二项展开式中x的系数,设bn=3nan,Tn为数列{bn}的前n项和,则an=______,T99=______.-数学

题目详情

数列{an}中,a1=1,当n≥2时,an(3-
x
)n
的二项展开式中x的系数,设bn=
3n
an
Tn
为数列{bn}的前n项和,则an=______,T99=______.
题型:填空题难度:中档来源:不详

答案

(3-
x
)n
的二项展开式的通项公式为Tr+1=
Crn
(-1)r•3n-r•(
x
)
r

令r=2,则T3=
C2n
3n-2x,
∴当n≥2时,an=
n(n-1)
2
•3n-2,
∴an=
1,n=1
n(n-1)
2
•3n-2,n≥2

又bn=
3n
an
,数列{bn}的前n项和为Tn,
∴当n≥2时,bn=
3n
3n-2
n(n-1)
2
=class="stub"18
n(n-1)
=18(class="stub"1
n-1
-class="stub"1
n
),又b1=3,
∴T99=3+18[(1-class="stub"1
2
)+(class="stub"1
2
-class="stub"1
3
)+…+(class="stub"1
98
-class="stub"1
99
)]
=3+18(1-class="stub"1
99

=3+class="stub"196
11

=class="stub"229
11

故答案为:
1,n=1
n(n-1)
2
•3n-2,n≥2
class="stub"229
11

更多内容推荐