优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 设数列{an}的前n项和为Sn,且a1=1,Sn=nan-2n(n-1)(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)证明:1a1a2+1a2a3+…+1an-1an<14.-数学
设数列{an}的前n项和为Sn,且a1=1,Sn=nan-2n(n-1)(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)证明:1a1a2+1a2a3+…+1an-1an<14.-数学
题目简介
设数列{an}的前n项和为Sn,且a1=1,Sn=nan-2n(n-1)(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)证明:1a1a2+1a2a3+…+1an-1an<14.-数学
题目详情
设数列{a
n
}的前n项和为S
n
,且a
1
=1,
S
n
=n
a
n
-2n(n-1)(n∈
N
*
)
.
(Ⅰ)求数列{a
n
}的通项公式;
(Ⅱ)证明:
1
a
1
a
2
+
1
a
2
a
3
+…+
1
a
n-1
a
n
<
1
4
.
题型:解答题
难度:中档
来源:不详
答案
(Ⅰ)依题意
S
n
=n
a
n
-2n(n-1)(n∈
N
*
)
S
n-1
=(n-1)
a
n-1
-2(n-1)(n-2)(n≥2,n∈
N
*
)
两式相减得
a
n
=
S
n
-
S
n-1
=n
a
n
-(n-1)
a
n-1
-4n+4,(n≥2,n∈
N
*
)
所以(1-n)an=-(n-1)an-1-4(n-1)
因为n≥2,n∈N*,所以1-n≠0,
两边同除以(1-n)可得,
a
n
=
a
n-1
+4⇒
a
n
-
a
n-1
=4,(n≥2,n∈
N
*
)
所以{an}是以a1=1为首项,公差为4的等差数列
所以an=a1+(n-1)d=4n-3
(Ⅱ)证明:由(Ⅰ)知
class="stub"1
a
n-1
•
a
n
=
class="stub"1
(4n-7)(4n-3)
=
class="stub"1
4
(
class="stub"1
4n-7
-
class="stub"1
4n-3
)
所以
class="stub"1
a
1
a
2
+
class="stub"1
a
2
a
3
+…+
class="stub"1
a
n-1
a
n
=
class="stub"1
4
(1-
class="stub"1
5
+
class="stub"1
5
-
class="stub"1
9
+
class="stub"1
9
-
class="stub"1
13
+…+
class="stub"1
4n-7
-
class="stub"1
4n-3
)
=
class="stub"1
4
(1-
class="stub"1
4n-3
)<
class="stub"1
4
上一篇 :
数列1+12,2+14,3+18,…,n+12n,…的
下一篇 :
设f(x)是定义在R上恒不为零的函
搜索答案
更多内容推荐
设曲线y=xn(n∈N*)与x轴及直线x=1围成的封闭图形的面积为an,设bn=anan+1,则b1+b2+…+b2012=()A.5031007B.20112012C.20122013D.20132
已知数列{an},Sn是数列{an}的前n项和,且Sn=n2+n+1,则an=______.-数学
在数列{an}中,对于任意的正整数n都有a1+a2+…+an=3n-1,则{an2}的前n项和为()A.9n-1B.9n-12C.9n-14D.49-数学
若数列{an}的前n项和Sn=2n-1,则a3=()A.2B.4C.6D.8-数学
已知数列{an}的通项公式是an=(-1)n(n+1),则a1+a2+a3+…+a10=()A.-55B.-5C.5D.55-数学
已知公差不为0的等差数列{an}的前n项和为Sn,且满足S5=3a5-2,又a1,a2,a5依次成等比数列,数列{bn}满足b1=-9,bn+1=bn+k2an+12,(n∈N+)其中k为大于0的常数
已知数列{an}的前n项和为Sn,Sn+1=4an-2,且a1=2.(Ⅰ)求证:对任意n∈N*,an+1-2an为常数C,并求出这个常数C;(Ⅱ)如果bn=1anan+1,求数列{bn}的前n项的和.
已知数列{an}的前n项和Sn满足Sn=2n-1,则当n≥2时,1a1+1a2+…+1an=______.-数学
数列{an}的前n项和Sn=2n2-3n(n∈N*),则a4=()A.11B.15C.17D.20-数学
设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有2Sn=an+1.(I)求a1,a2的值;(II)求数列{an}的通项公式;(III)令b1=1,b2k=a2k-1+(-1)k,
已知数列{an}满足a1=1,an+1=2an,(n为正奇数)an+1,(n为正偶数),则其前6项之和是()A.16B.20C.33D.120-数学
函数f(x)=x3,在等差数列{an}中,a3=7,a1+a2+a3=12,记Sn=f(3an+1),令bn=anSn,数列{bn}的前n项和为Tn(1)求{an}的通项公式和Sn(2)求证Tn<13
已知数列{an}的前n项和为Sn,满足an≠0,anSn+1-an+1Sn=2n-1an+1an,n∈N*(1)求证Sn=2n-1an(2)设bn=anan+1求数列{bn}的前n项和Tn.-数学
在数列{an}中,a1=1,a2=2,且an+2=an+1+(-1)n(n∈N*),Sn为数列{an}的前n项和,则S100=______.-数学
在数列{an}中,a1=1,an+1=1-14an,bn=22an-1,其中n∈N*.(1)求证:数列{bn}是等差数列,并求数列{an}的通项公式an;(2)设cn=2n+1an,数列{cncn+2
设数列{xn}满足lnxn+1=1+lnxn,且x1+x2+x3+…+x10=10.则x21+x22+x23+…+x30的值为()A.11•e20B.11•e21C.10•e21D.10•e20-数学
已知数列{an}满足a1=1,点P(an,an+1)在直线x-y+1=0上,数列{bn}满足nb1+(n-1)b2+…+2bn-1+bn=(13)n-1+(13)n-2+…+13+1,n∈N*.(Ⅰ)
已知数列{an},{bn}都是等差数列,且a1=5,b1=15,a100+b100=100,数列{cn}满足cn=an+bn(n∈N*),则数列{cn}的前100项和是______.-数学
数列{an}是首项为0的等差数列,数列{bn}是首项为1的等比数列,设cn=an+bn,数列{cn}的前三项依次为1,1,2.(1)求数列{an},{bn}的通项公式.(2)求数列{cn}的前n项的和
数列{an}满足:an+2=an+1-an(n∈N*),且a2=1,若数列的前2012项之和为2013,则前2013项的和等于______.-数学
在等差数列{an}中,a1=2,公差不为0,且a1,a3,a7成等比数列,(1)求数列{an}的通项公式.(2)若数列bn=1nan,Tn为数列{bn}的前n项和,求Tn.-数学
在数列{an}中,已知a1=1,an+1=an+2n,则a10=______.-数学
数列{an}中,an=1n(n+1)(n+2),Sn为{an}的前n项和,则S1+S2+…+S10的值为()A.5524B.124C.552D.6524-数学
已知Sn=2+24+27+210+…+23n+10(n∈N*),则Sn=______.-数学
求和:Sn=1+11+111+…+11…1n个.-数学
求数列10,2012,3014,…,10n+12n-1的前n项和Sn.-数学
已知定义在R上的函数f(x)满足:①当x>0时,f(x)>1,②∀x、y∈R,f(x+y)=f(x)f(y).数列{an}满足①a1=1,②f(an+1)=f(an)f(1),(n∈N*),Tn=-a
已知数列{an}的各项均为正数,且满足a2=5,an+1=an2-2nan+2,(n∈N*).(1)推测{an}的通项公式;(2)若bn=2n-1,令cn=an+bn,求数列cn的前n项和Tn.-数学
设数列{an}的前n项和为Sn,且Sn=2an-1(n∈N*).(I)求数列{an}的通项公式;(Ⅱ)设数列{nan}的前n项和为Tn,对任意n∈N*,比较Tn2与Sn的大小.-数学
已知等差数列{an}的首项a1=1,公差d>0,且其第二项、第五项、第十四项分别是{bn}等比数列的第二、三、四项;(1)求数列{an}与{bn}的通项公式;(2)设数列{cn}对任意自然数n均有-高
为[]A、-2B、11C、17D、21-高一数学
已知数列{an}的通项公式an=1(2n-1)•(2n+1).若数列{an}的前n项和Sn=715,则n等于()A.6B.7C.8D.9-数学
等差数列{an}的前n项和为Sn,若a6a4=711,则S11S7=()A.-1B.1C.2D.12-数学
已知数列{an}的通项公式an=n2n,求其前5项的和()A.3116B.5532C.3716D.5732-数学
一个数字生成器,生成规则如下:第1次生成一个数x,以后每次生成的结果可将上一次生成的每一个数x生成两个数,一个是-x,另一个是x+3.设第n次生成的数的个数为an,则数列{an}-数学
已知函数f(x)=(x-2)2,f′(x)是函数f(x)的导函数,设a1=3,an+1=an-f(an)f′(an)(I)证明:数列{an-2}是等比数列,并求出数列{an}的通项公式;(II)令bn
有一个翻硬币游戏,开始时硬币正面朝上,然后掷骰子根据下列①、②、③的规则翻动硬币:①骰子出现1点时,不翻动硬币;②出现2,3,4,5点时,翻动一下硬币,使另一面朝上;③出现6-数学
一个数列,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,那么这个数列的前2-数学
数列{an}的通项an=(2cos2nπ3-1)n2,其前n项和为Sn,则S24的值为()A.470B.360C.304D.169-数学
数列{an}前n项和为Sn且an+Sn=1(n∈N*)(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an(n≥1),求{bn}通项公式及前n项和Tn.-数学
已知数列{an}中,a1=13,an•an-1=an-1-an(n≥2,n∈N*),数列{bn}满足bn=1an(n∈N*).(Ⅰ)求数列{bn}的通项公式;(Ⅱ)设数列{1nbn}的前n项和为Tn,
已知函数f(x)=x2+2x。(1)数列{an}满足:a1=1,an+1=,求数列{an}的通项公式;(2)已知数列{bn}满足b1=t>0,bn+1=f(bn)(n∈N*),求数列{bn}的通
设{an}为等比数列,{bn}为等差数列,且b1=0,cn=an+bn,若{cn}是1,1,2,…,求数列{cn}的前10项和.-数学
已知函数f(x)=x2+bx,若直线y=bx+1与直线x-y+2=0平行,则数列{1f(n)}的前n项和为Sn,则S2010的值为______.-数学
已知数列{an}的前n项和Sn=n2+2n+3,(n∈N*)(1)求通项an;(2)求和1a1a2+1a2a3+1a3a4+…+1anan+1.-数学
数列1,-5,9,-13,17,-21,…,(-1)n-1(4n-3),…,的前n项和为Sn,则S15的值是()A.28B.29C.27D.85-数学
已知数列{an-n}是等比数列,且满足a1=2,an+1=3an-2n+1,n∈N*.(Ⅰ)求数列{an}的通项公式an;(Ⅱ)求数列{an}的前n项和Sn.-数学
已知数列{an}中,a1=1,(an,an+1)在x-y+1=0上,sn为{an}前n项和,则1s1+1s2+1s3+…+1s10=______.-数学
在数列an中a1+2a2+3a3+…+nan=n(2n+1)(n∈N*(1)求数列an的通项公式;(2)求数列{nan2n}的前n项和Tn.-数学
(理科)设等比数列{an}的前n项和为Sn,已知a1=2,且an+2an+1+an+2=0(n∈N*),则S2010=()A.2B.0C.-2D.200-数学
返回顶部
题目简介
设数列{an}的前n项和为Sn,且a1=1,Sn=nan-2n(n-1)(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)证明:1a1a2+1a2a3+…+1an-1an<14.-数学
题目详情
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:
答案
Sn-1=(n-1)an-1-2(n-1)(n-2)(n≥2,n∈N*)
两式相减得an=Sn-Sn-1=nan-(n-1)an-1-4n+4,(n≥2,n∈N*)
所以(1-n)an=-(n-1)an-1-4(n-1)
因为n≥2,n∈N*,所以1-n≠0,
两边同除以(1-n)可得,an=an-1+4⇒an-an-1=4,(n≥2,n∈N*)
所以{an}是以a1=1为首项,公差为4的等差数列
所以an=a1+(n-1)d=4n-3
(Ⅱ)证明:由(Ⅰ)知
所以
=