已知数列{an}满足a1=1,点P(an,an+1)在直线x-y+1=0上,数列{bn}满足nb1+(n-1)b2+…+2bn-1+bn=(13)n-1+(13)n-2+…+13+1,n∈N*.(Ⅰ)

题目简介

已知数列{an}满足a1=1,点P(an,an+1)在直线x-y+1=0上,数列{bn}满足nb1+(n-1)b2+…+2bn-1+bn=(13)n-1+(13)n-2+…+13+1,n∈N*.(Ⅰ)

题目详情

已知数列{an}满足a1=1,点P(an,an+1)在直线x-y+1=0上,数列{bn}满足nb1+(n-1)b2+…+2bn-1+bn=(
1
3
)n-1+(
1
3
)n-2+…+
1
3
+1
,n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=-anbn,求数列{cn}的前n项和Tn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)由点P(an,an+1)在直线x-y+1=0上,所以an+1-an=1.
则数列{an}是首项为1,公差为1的等差数列,所以an=n.
nb1+(n-1)b2++2bn-1+bn=(class="stub"1
3
)n-1+(class="stub"1
3
)n-2++class="stub"1
3
+1

则(n-1)b1+(n-2)b2++bn-1=(class="stub"1
3
)n-2++class="stub"1
3
+1
,(n≥2)
两式相减得:b 1+b2++bn=(class="stub"1
3
)n-1
,n≥2.
即数列{bn}的前n项和Sn=(class="stub"1
3
)n-1
,n≥2.
当n=1时,b1=S1=1,所以Sn=(class="stub"1
3
)n-1

当n≥2时,bn=Sn-Sn-1=(class="stub"1
3
)n-1-(class="stub"1
3
)n-2=-class="stub"2
3
•(class="stub"1
3
)n-2

所以bn=
1,(n=1)
-class="stub"6
3n
,(n≥2)
.(7分)

(Ⅱ)因为cn=-anbn,所以cn=
-1,(n=1)
class="stub"6n
3n
,(n≥2)

当n=1时,Tn=T1=-1,当n≥2时,
Tn=-1+class="stub"6×2
32
+class="stub"6×3
33
+class="stub"6×4
34
++class="stub"6×n
3n
=-1+6(class="stub"2
32
+class="stub"3
33
+class="stub"4
34
++class="stub"n
3n
)

T=class="stub"2
32
+class="stub"3
33
+class="stub"4
34
++class="stub"n
3n
,则class="stub"1
3
T=class="stub"2
33
+class="stub"3
34
+class="stub"4
35
++class="stub"n-1
3n
+class="stub"n
3n+1

两式相减得:class="stub"2
3
T=class="stub"2
32
+class="stub"1
33
+class="stub"1
34
++class="stub"1
3n
-class="stub"n
3n+1
=class="stub"2
9
+
class="stub"1
27
(1-class="stub"1
3n-2
)
1-class="stub"1
3
-class="stub"n
3n+1
=class="stub"5
18
-class="stub"1
2
•class="stub"1
3n
-class="stub"n
3n+1

所以T=class="stub"5
12
-class="stub"3
4
•class="stub"1
3n
-class="stub"1
2
•class="stub"n
3n

因此Tn=-1+6(class="stub"2
32
+class="stub"3
33
+class="stub"4
34
++class="stub"n
3n
)
=-1+6(class="stub"5
12
-class="stub"3
4
•class="stub"1
3n
-class="stub"1
2
•class="stub"n
3n
)=class="stub"3
2
-class="stub"1
2
•class="stub"9
3n
-class="stub"3n
3n
,n≥2.(13分)
又n=1时,T1=-1也满足上式,故Tn=class="stub"3
2
-class="stub"1
2
•class="stub"9
3n
-class="stub"3n
3n

更多内容推荐