已知数列{an}的前n项和为Sn,且a1=4,Sn=nan+2-n(n-1)2,(n≥2,n∈N*).(I)求数列{an}的通项公式;(II)已知bn>an,(n≥2,n∈N*),求证:(1+1b2b

题目简介

已知数列{an}的前n项和为Sn,且a1=4,Sn=nan+2-n(n-1)2,(n≥2,n∈N*).(I)求数列{an}的通项公式;(II)已知bn>an,(n≥2,n∈N*),求证:(1+1b2b

题目详情

已知数列{an}的前n项和为Sn,且a1=4,Sn=nan+2-
n(n-1)
2
,(n≥2,n∈N*)

(I)求数列{an}的通项公式;
(II) 已知bn>an,(n≥2,n∈N*),求证:(1+
1
b2b3
)(1+
1
b3b4
)(1+
1
b4b5
)…(1+
1
bnbn+1
3e
题型:解答题难度:中档来源:广州一模

答案

(I)当n≥3时,由sn=nan+2-
n(n-1)
2

Sn-1=(n-1)an-1+2-
(n-1)(n-2)
2

可得an=nan-(n-1)an-1-class="stub"n-1
2
×2

故an-an-1=1(n≥3,n∈N+).
所以an=
4     n=1
n+1      n≥2

(II)设f(x)=ln(1+x)-x,则f'(x)=class="stub"1
1+x
-1=class="stub"-x
1+x
<0,
故f(x)在(0,+∞)上单调递减,∴f(x)<f(0),即ln(1+x)<x
∵n≥2时,class="stub"1
bn
class="stub"1
an
=class="stub"1
n+1
,ln(1+class="stub"1
bnbn+1
)<class="stub"1
bnbn+1
class="stub"1
(n+1)(n+2)
=class="stub"1
n+1
-class="stub"1
n+2

∴ln(1+class="stub"1
b2b3
)+ln(1+class="stub"1
b3• b4
)+…+ln(1+class="stub"1
bnbn+1
)<class="stub"1
3
-class="stub"1
4
+class="stub"1
4
-class="stub"1
5
+…+class="stub"1
n+1
-class="stub"1
n+2
=class="stub"1
3
-class="stub"1
n+2
class="stub"1
3

∴(1+class="stub"1
b2b3
)(1+class="stub"1
b3b4
)(1+class="stub"1
b4b5
)…(1+class="stub"1
bnbn+1
3e

更多内容推荐