已知数列{an}满足a1=1,且an=2an-1+2n(n≥2且n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{an}的前n项之和Sn,求Sn,并证明:Sn2n>2n-3.-数学

题目简介

已知数列{an}满足a1=1,且an=2an-1+2n(n≥2且n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{an}的前n项之和Sn,求Sn,并证明:Sn2n>2n-3.-数学

题目详情

已知数列{an}满足a1=1,且an=2an-1+2n(n≥2且n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项之和Sn,求Sn,并证明:
Sn
2n
>2n-3.
题型:解答题难度:中档来源:浙江模拟

答案

(Ⅰ)∵an=2an-1+2n(n≥2,且n∈N*),
an
2n
=
an-1
2n-1
+1
,即
an
2n
-
an-1
2n-1
=1
(n≥2,且n∈N*),…(3分)
所以,数列{
an
2n
}是等差数列,公差d=1,首项class="stub"1
2
,…(5分)
于是
an
2n
=class="stub"1
2
+(n-1)d
=class="stub"1
2
+(n-1)•1
=n-class="stub"1
2

an=(n-class="stub"1
2
)•2n
.…(7分)
(Ⅱ)∵Sn=class="stub"1
2
•2+class="stub"3
2
•22+class="stub"5
2
23+…+
(n-class="stub"1
2
)•2n,①
∴2Sn=class="stub"1
2
22+class="stub"3
2
23+class="stub"5
2
24
+…+(n-class="stub"1
2
)•2n+1
,②…(9分)
①-②,得-Sn=1+22+23+…+2n-(n-class="stub"1
2
)•2n+1

=2+22+23+…+2n-(n-class="stub"1
2
)•2n+1-1

=
2(1-2n)
1-2
-(n-class="stub"1
2
)•2n+1-1

=(3-2n)•2n-3,…(12分)
Sn=(2n-3)•2n+3>(2n-3)•2n,
Sn
2n
>2n-3.…(14分)

更多内容推荐