优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 定义集合运算:A⊙B={Z|Z=xy,x∈A,y∈B},设集合A={-1,0,1},B={sinα,cosα},则集合A⊙B的所有元素之和为()A.1B.0C.-1D.sinα+cosα-数学
定义集合运算:A⊙B={Z|Z=xy,x∈A,y∈B},设集合A={-1,0,1},B={sinα,cosα},则集合A⊙B的所有元素之和为()A.1B.0C.-1D.sinα+cosα-数学
题目简介
定义集合运算:A⊙B={Z|Z=xy,x∈A,y∈B},设集合A={-1,0,1},B={sinα,cosα},则集合A⊙B的所有元素之和为()A.1B.0C.-1D.sinα+cosα-数学
题目详情
定义集合运算:A⊙B={Z|Z=xy,x∈A,y∈B},设集合A={-1,0,1},B={sinα,cosα},则集合A⊙B的所有元素之和为( )
A.1
B.0
C.-1
D.sinα+cosα
题型:单选题
难度:中档
来源:不详
答案
∵A⊙B={Z|Z=xy,x∈A,y∈B},
集合A={-1,0,1},B={sinα,cosα},
∴集合A⊙B={-sinα,-cosα,0,sinα,cosα},
∴集合A⊙B的所有元素之和为:
(-sinα)+(-cosα)+0+sinα+cosα=0.
故选B.
上一篇 :
已知数列|an|的前n项和为Sn,若a
下一篇 :
已知数列{an}的各项均为正值,a1
搜索答案
更多内容推荐
利用等比数列的前n项和公式的推导方法,计算Sn=32+54+78+…+2n+12n=______.-数学
已知数列{an}中,a1=3,an+1-2an=0,数列{bn}中,bn•an=(-1)n(n∈N*).(Ⅰ)求数列{an}通项公式;(Ⅱ)求数列{bn}通项公式以及前n项的和.-数学
求和:(a-1)+(a2-2)+…+(an-n),(a≠0)-数学
已知Sn=11×2+12×3+13×4+…+1n×(n+1)(n∈N*)的值是20082009,则n=______.-数学
已知在数列{an}中,Sn是前n项和,满足Sn+an=n,(n=1,2,3,…).(Ⅰ)求a1,a2,a3的值;(Ⅱ)求数列{an}的通项公式;(Ⅲ)令bn=(2-n)(an-1)(n=1,2,3,…
在等差数列{an}中,a1=1,a6=2a3+1,对任意的n,设Sn=a1-a2+a3-a4+…+(-1)n-1an,则满足S2k+1>35的最小正整数K的取值等于()A.16B.17C.18D.19
已知数列{an}的前n项和Sn=2-an,(1)求数列{an}的通项公式;(2)求数列{Sn}的前项和.-数学
已知公差不为0的等差数列{an}满足a2=3,a1,a3,a7成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)数列{bn}满足bn=anan+1+an+1an,求数列{bn}的前n项和Sn;(Ⅲ)设
设数列{an}中的前n项和Sn=14(an+1)2,且an>0.(1)求a1、a2;(2)求{an}的通项;(3)令bn=20-an,求数列{bn}的前多少项和最大?最大值是多少?-数学
数列{an}的通项公式an=1n+n+1,则该数列的前多少项之和等于9()A.98B.99C.96D.97-数学
已知数列{an},满足a1=1,1an+1=1an+1,Sn是数列{anan+1}的前n项和,则S2011=______.-数学
已知数列{an}满足a1=1,a2=2,对于任意的正整数n都有an-an+1≠1,anan+1an+2=an+an+1+an+2,则S2012=______.-数学
已知数列{an}的前n项和Sn满足Sn=2n+1,则当n≥2时,1a1+1a2+…+1an=______.-数学
设数列{an}是公差为d的等差数列,其前n项和为Sn.已知a1=1,d=2,①求当n∈N*时,Sn+64n的最小值;②证明:由①知Sn=n2,当n∈N*时,2s1s3+3s2s4…+n+1SnSn+2
已知函数f(x)=a•2x+b的图象经过A(1,1),B(2,3)及C(n,Sn),其中Sn为数列{an}的前n项和,n∈N*.(Ⅰ)求{an}的通项公式及前n项和Sn;(Ⅱ)若{cn}中,cn=n(
等差数列{an}的前n项和为Sn,已知(a2-1)3+2011(a2-1)=sin2011π3,(a2010-1)3+2011(a2010-1)=cos2011π6,则S2011等于()A.4022B
已知数列{an}的前n项的和Sn满足log2(Sn+1)=n,则an=______.-数学
已知数列{an}各项均为正数,前n项和Sn满足Sn=12a2n+12an-3,(n∈N*),数列{bn}满足:点列An(n,bn)在直线2x-y+1=0(Ⅰ)分别求数列{an},{bn}的通项公式;(
已知在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2=an(Sn-12).(Ⅰ)求Sn的表达式;(Ⅱ)设bn=Sn2n+1,求数列{bn}的前n项和Tn.-数学
已知数列{an}的通项公式an=n2cosnπ,Sn为它的前n项的和,则s20102011=()A.1005B.1006C.2009D.2010-数学
已知数列{an}的前n项和为Sn=3n,数列{bn}满足b1=-1,bn-1=bn+(2n-1)(n∈N*).(Ⅰ)求数列{an}的通项公式an;(Ⅱ)求数列{bn}的通项公式bn;(Ⅲ)若cn=an
(2-3×5-1)+(4-3×5-2)+…(2n-3×5-n)=______.-数学
设集合M={1,2,3,…,n}(n∈N+),对M的任意非空子集A,定义f(A)为A中的最大元素,当A取遍M的所有非空子集时,对应的f(A)的和为Sn,则:①S3=______.②Sn=______.
已知{an}前n项和Sn=n2-4n+1,则|a1|+|a2|+…+|a10|的值为______.-数学
求和:Sn=1•n+2•(n-1)+3•(n-2)+…+n•1.-数学
已知数列{an}的通项公式an=2n+1[n(n+1)]2,求它的前n项和.-数学
数列12•5,15•8,18•11…1(3n-1)(3n+2),…的前n项和Sn为()A.n3n+2B.n6n+4C.3n6n+4D.n+1n+2-数学
已知数列{an}的通项公式为an=-2n+11,其前n项的和为Sn(n∈N*),则当Sn取最大值时,n=______.-数学
设数列{an}满足an≠0,a1=1,an=(1-2n)anan-1+an-1(n≥2),数列{an}的前n项和为Sn.(1)求数列{an}的通项公式;(2)求证:当n≥2时,nn+1<Sn<2;(3
数列{an}中,a1=1,当n≥2时,an是(3-x)n的二项展开式中x的系数,设bn=3nan,Tn为数列{bn}的前n项和,则an=______,T99=______.-数学
设数列{an}的前n项和为Sn,且Sn2-2Sn-anSn+1=0,n=1,2,3,….(1)求a1,a2,a3;(2)求Sn的表达式.-数学
(1002-992)+(982-972)+…+(22-12)=______.-数学
数列{an}的通项公式an=ncosnπ2,前n项和为Sn,则S2012=______.(a>b>0)-数学
已知数列{an}是等差数列,其前n项和为Sn,若a1a2a3=15,且3S1S3+15S3S5+5S5S1=35,则a2=______.-数学
已知数列{an}是公差为正数的等差数列,且a1+a2=1,a2•a3=10,那么数列{an}的前5项的和S5=______.-数学
已知函数f(x)=x3x+1,数列an满足a1=1,an+1=f(an)(n∈N*).(1)求数列{an}的通项公式;(2)记Sn=a1a2+a2a3+…+anan+1,求Sn.-数学
已知数列{an}的前n项和为Sn,且a1=4,Sn=nan+2-n(n-1)2,(n≥2,n∈N*).(I)求数列{an}的通项公式;(II)已知bn>an,(n≥2,n∈N*),求证:(1+1b2b
已知等差数列{an}中,a1=1,前10项和S10=100;(1)求数列{an}的通项公式;(2)设log2bn=an,证明{bn}为等比数列,并求{bn}的前四项之和.(3)设cn=bn+an,求{
已知正项数列{an}的前n项和为Sn,且an和Sn满足:4Sn=(an+1)2(n=1,2,3…),(1)求{an}的通项公式;(2)设bn=1an•an+1,求{bn}的前n项和Tn;(3)在(2)
已知数列{an}满足:a1=1,a2=2,对任意的正整数n都有an•an+1≠1,an•an+1•an+2=an+an+1+an+2,则a1+a2+a3+…+a2006=______.-数学
已知Sn是数列{an}的前n项和,且Sn=n2(n∈N*).(1)求{an}的通项公式;(2)令bn=1anan=1,Tn是数列{bn}的前n项和,试证明Tn<12.-数学
已知Sn是正项数列{an}的前n项和,且Sn是14与(an+1)2的等比中项.(1)求证:数列{an}是等差数列;(2)若bn=an2n,求数列{bn}的前n项和Tn;(3)若bn≤14m2-m-12
已知数列{an}的通项公式为an=2n-5,记前n项和为Sn.(1)求|a1|+|a2|+…+|a10|的值;(2)求数列{Sn}的最小项的值.-数学
已知数列{an}的通项公式an=(2n)2(2n-1)(2n+1),求它的前n项和.-数学
设数列{an}是以2为首项,1为公差的等差数列,{bn}是以1为首项,2为公比的等比数列,则ab1+ab2+…+ab10=()A.1033B.1034C.2057D.2058-数学
已知数列{an}满足a1=1,且an=2an-1+2n(n≥2且n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{an}的前n项之和Sn,求Sn,并证明:Sn2n>2n-3.-数学
已知等差数列{an}各项都不相同,前3项和为18,且a1、a3、a7成等比数列(1)求数列{an}的通项公式;(2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=2,求数列{1bn}的前
设无穷等差数列{an}的前n项和为Sn.(1)若数列首项为a1=32,公差d=1,求满足Sk2=(Sk)2的正整数k的值;(2)若Sn=n2,求通项an;(3)求所有无穷等差数列{an},使得对于一切
已知.abcd.=ad-bc,则.46810.+.12141618.+…+.2004200620082010.=()A.-2008B.2008C.2010D.-2010-数学
已知数列{an}的通项公式an=1n+n+1,若它的前n项和为10,则项数n为______.-数学
返回顶部
题目简介
定义集合运算:A⊙B={Z|Z=xy,x∈A,y∈B},设集合A={-1,0,1},B={sinα,cosα},则集合A⊙B的所有元素之和为()A.1B.0C.-1D.sinα+cosα-数学
题目详情
答案
集合A={-1,0,1},B={sinα,cosα},
∴集合A⊙B={-sinα,-cosα,0,sinα,cosα},
∴集合A⊙B的所有元素之和为:
(-sinα)+(-cosα)+0+sinα+cosα=0.
故选B.