已知公差不为0的等差数列{an}满足a2=3,a1,a3,a7成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)数列{bn}满足bn=anan+1+an+1an,求数列{bn}的前n项和Sn;(Ⅲ)设

题目简介

已知公差不为0的等差数列{an}满足a2=3,a1,a3,a7成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)数列{bn}满足bn=anan+1+an+1an,求数列{bn}的前n项和Sn;(Ⅲ)设

题目详情

已知公差不为0的等差数列{an}满足a2=3,a1,a3,a7成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足bn=
an
an+1
+
an+1
an
,求数列{bn}的前n项和Sn
(Ⅲ)设cn=2n(
an+1
n
-λ)
,若数列{cn}是单调递减数列,求实数λ的取值范围.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)由题知
a23
=a1a7,设等差数列{an}的公差为d,
(a1+2d)2=a1(a1+6d),
a1d=2d2,∵d≠0
∴a1=2d.                                                  …(1分)
又∵a2=3,
∴a1+d=3a1=2,d=1…(2分)
∴an=n+1.                                                 …(3分)
(Ⅱ)∵bn=
an
an+1
+
an+1
an
=class="stub"n+1
n+2
+class="stub"n+2
n+1
=2+class="stub"1
n+1
-class="stub"1
n+2
.            …(4分)
∴Sn=b1+b2+…+bn=(2+class="stub"1
2
-class="stub"1
3
)+(2+class="stub"1
3
-class="stub"1
4
)+…+(2+class="stub"1
n+1
-class="stub"1
n+2
)=2n+class="stub"n
2(n+2)
.                          …(6分)
( III)cn=2n(
an+1
n
-λ)=2n(class="stub"n+2
n
-λ),使数列{cn}是单调递减数列,
则cn+1-cn=2n(
2(n+3)
n+1
-class="stub"n+2
n
-λ)<0对n∈N*都成立    …(7分)
2(n+3)
n+1
-class="stub"n+2
n
-λ<0⇒λ>(
2(n+3)
n+1
-class="stub"n+2
n
)
max
…(8分)
设f(n)=
2(n+3)
n+1
-class="stub"n+2
n

f(n+1)-f(n)=
2(n+4)
n+2
-class="stub"n+3
n+1
-
2(n+3)
n+1
+class="stub"n+2
n

=
2(n+4)
n+2
+class="stub"n+2
n
-
3(n+3)
n+1

=2+class="stub"4
n+2
+1+class="stub"2
n
-3-class="stub"6
n+1

=
2(2-n)
n(n+1)(n+2)
…(9分)
∴f(1)<f(2)=f(3)>f(4)>f(5)>…
当n=2或n=3时,f(n)max=class="stub"4
3

(
2(n+3)
n+1
-class="stub"n+2
n
)
max
=class="stub"4
3

所以λ>class="stub"4
3
.               …(10分)

更多内容推荐