已知向量OA=(cosα,sinα)(α∈[-π,0]).向量m=(2,1),n=(0,-5),且m⊥(OA-n).(Ⅰ)求向量OA;(Ⅱ)若cos(β-π)=210,0<β<π,求cos(2α-β)

题目简介

已知向量OA=(cosα,sinα)(α∈[-π,0]).向量m=(2,1),n=(0,-5),且m⊥(OA-n).(Ⅰ)求向量OA;(Ⅱ)若cos(β-π)=210,0<β<π,求cos(2α-β)

题目详情

已知向量
OA
=(cosα,sinα)
(α∈[-π,0]).向量m=(2,1),n=(0,-
5
)
,且m⊥(
OA
-
n).
(Ⅰ)求向量
OA

(Ⅱ)若cos(β-π)=
2
10
,0<β<π,求cos(2α-β).
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵
OA
=(cosα,sinα)

OA
-
n
=(cosα,sinα+
5
)

m
⊥(
OA
-
n
)
,∴
m
•(
OA
-
n
)=0

2cosα+(sinα+
5
)=0
           ①
又sin2α+cos2α=1                      ②
由①②联立方程解得,
cosα=-
2
5
5
sinα=-
5
5

OA
=(-
2
5
5
,-
5
5
)


(Ⅱ)∵cos(β-π)=
2
10

cosβ=-
2
10
,0<β<π,
sinβ=
7
2
10
class="stub"π
2
<β<π

又∵sin2α=2sinαcosα=2×(-
5
5
)×(-
2
5
5
)=class="stub"4
5

cos2α=2cos2α-1=2×class="stub"4
5
-1=class="stub"3
5

cos(2α-β)=cos2αcosβ+sin2αsinβ=class="stub"3
5
×(-
2
10
)+class="stub"4
5
×
7
2
10
=
25
2
50
=
2
2

更多内容推荐