定义满足不等式|x-A|<B(A∈R,B>0)的实数x的集合叫做A的B邻域.若a+b-t(t为正常数)的a+b邻域是一个关于原点对称的区间,则a2+b2的最小值为______.-数学

题目简介

定义满足不等式|x-A|<B(A∈R,B>0)的实数x的集合叫做A的B邻域.若a+b-t(t为正常数)的a+b邻域是一个关于原点对称的区间,则a2+b2的最小值为______.-数学

题目详情

定义满足不等式|x-A|<B(A∈R,B>0)的实数x的集合叫做A的B 邻域.若a+b-t(t为正常数)的a+b邻域是一个关于原点对称的区间,则a2+b2的最小值为______.
题型:填空题难度:中档来源:不详

答案

因为:A的B邻域在数轴上表示以A为中心,B为半径的区域,
∴|x-(a+b-t)|<a+b⇒-t<x<2(a+b)-t,
而邻域是一个关于原点对称的区间,所以可得a+b-t=0⇒a+b=t.
又因为:a2+b2≥2ab⇒2(a2+b2)≥a2+2ab+b2=(a+b)2=t2.
所以:a2+b2≥
t 2
2

故答案为:
t 2
2

更多内容推荐