等差数列{an}的前n项和记为Sn,已知a10=30,a20=50.(1)求数列{an}的通项an;(2)若Sn=210,求n;(3)令bn=2an-10,求证:数列{bn}为等比数列.-数学

题目简介

等差数列{an}的前n项和记为Sn,已知a10=30,a20=50.(1)求数列{an}的通项an;(2)若Sn=210,求n;(3)令bn=2an-10,求证:数列{bn}为等比数列.-数学

题目详情

等差数列{an}的前n项和记为Sn,已知a10=30,a20=50.
(1)求数列{an}的通项an
(2)若Sn=210,求n;
(3)令bn=2an-10,求证:数列{bn}为等比数列.
题型:解答题难度:中档来源:不详

答案

(1)由an=a1+(n-1)d,a10=30,a20=50,得方程组
a1+9d=30
a1+19d=50
,…(2分)
解得a1=12,d=2.…(4分)
∴an=12+(n-1)•2=2n+10.…(5分)
(2)由Sn=na1+
n(n-1)
2
d,Sn=210
…(7分)
得方程12n+
n(n-1)
2
×2=210
…(8分)
解得n=10或n=-21(舍去) …(10分)
(3)由(1)得bn=2an-10=22n+10-10=22n=4n,…(11分)
bn+1
bn
=
4n+1
4n
=4

∴{bn}是首项是4,公比q=4的等比数列.…(12分)

更多内容推荐