设数列{an},{bn}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{an+1-an}(n∈N+)是等差数列,数列{bn-2}(n∈N+)是等比数列.(1)求数列{an}和{bn}的通项

题目简介

设数列{an},{bn}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{an+1-an}(n∈N+)是等差数列,数列{bn-2}(n∈N+)是等比数列.(1)求数列{an}和{bn}的通项

题目详情

设数列{an},{bn}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{an+1-an}(n∈N+)是等差数列,数列{bn-2}(n∈N+)是等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)是否存在k∈N+,使ak-bk∈(0,
1
2
)
,若存在,求出k,若不存在,说明理由.
题型:解答题难度:中档来源:不详

答案

(1)由已知a2-a1=-2,a3-a2=-1
得公差d=-1-(-2)=1
所以an+1-an=(a2-a1)+(n-1)×1=n-3
故an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=6+(-2)+(-1)+0+…+(n-4)
=6+
[(-2)+(n-4)](n-1)
2

=
n2-7n+18
2

由已知b1-2=4,b2-2=2所以公比q=class="stub"1
2

所以bn-2=(b1-2)(class="stub"1
2
)n-1=4×(class="stub"1
2
)n-1

bn=2+8×(class="stub"1
2
)n

(2)设f(k)=ak-bk=(class="stub"1
2
k2-class="stub"7
2
k+9)-[2+8×(class="stub"1
2
)
k
]

=class="stub"1
2
[(k-class="stub"7
2
)
2
-class="stub"49
4
]-8×(class="stub"1
2
)k+7

所以当k≥4时,f(k)是增函数.
f(4)=class="stub"1
2
,所以当k≥4时f(k)≥class="stub"1
2

而f(1)=f(2)=f(3)=0,所以不存在k,使f(k)∈(0,class="stub"1
2
)

更多内容推荐