在等差数列{an}中,a1=120,d=-4,若Sn≤an(n≥2),则n的最小值为______.-数学

题目简介

在等差数列{an}中,a1=120,d=-4,若Sn≤an(n≥2),则n的最小值为______.-数学

题目详情

在等差数列{an}中,a1=120,d=-4,若Sn≤an(n≥2),则n的最小值为______.
题型:填空题难度:中档来源:不详

答案

在等差数列{an}中,由a1=120,d=-4,
得:an=a1+(n-1)d=120-4(n-1)=124-4n,
Sn=na1+
n(n-1)d
2
=120n+
-4n(n-1)
2
=122n-2n2
由Sn≤an,得:122n-2n2≤124-4n.
即n2-63n+62≥0.解得:n≤1或n≥62.
因为n≥2,所以n≥62.
所以n的最小值为62.
故答案为62.

更多内容推荐