观察(x2)′=2x,(x4)′=4x3,y=f(x),由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()A.f(x)B.-f(x)C

题目简介

观察(x2)′=2x,(x4)′=4x3,y=f(x),由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()A.f(x)B.-f(x)C

题目详情

观察(x2)′=2x,(x4)′=4x3,y=f(x),由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=(  )
A.f(x)B.-f(x)C.g(x)D.-g(x)
题型:单选题难度:中档来源:山东

答案

由给出的例子可以归纳推理得出:
若函数f(x)是偶函数,则它的导函数是奇函数,
因为定义在R上的函数f(x)满足f(-x)=f(x),
即函数f(x)是偶函数,
所以它的导函数是奇函数,即有g(-x)=-g(x),
故选D.

更多内容推荐