优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 已知各项均为正数的数列{an},满足:a1=3,且2an+1-an2an-an+1=anan+1,n∈N*.(1)求数列{an}的通项公式;(2)设Sn=a12+a22+…+an2,Tn=1a21+1
已知各项均为正数的数列{an},满足:a1=3,且2an+1-an2an-an+1=anan+1,n∈N*.(1)求数列{an}的通项公式;(2)设Sn=a12+a22+…+an2,Tn=1a21+1
题目简介
已知各项均为正数的数列{an},满足:a1=3,且2an+1-an2an-an+1=anan+1,n∈N*.(1)求数列{an}的通项公式;(2)设Sn=a12+a22+…+an2,Tn=1a21+1
题目详情
已知各项均为正数的数列{a
n
},满足:a
1
=3,且
2
a
n+1
-
a
n
2
a
n
-
a
n+1
=
a
n
a
n+1
,n∈N
*
.
(1)求数列{a
n
}的通项公式;
(2)设S
n
=a
1
2
+a
2
2
+…+a
n
2
,
T
n
=
1
a
21
+
1
a
22
+…+a
1
a
2n
,求S
n
+T
n
,并确定最小正整数n,使S
n
+T
n
为整数.
题型:解答题
难度:中档
来源:江西
答案
(1)条件可化为
a
n+1
-
class="stub"1
a
n+1
=2(
a
n
-
class="stub"1
a
n
)
,
因此{
a
n
-
class="stub"1
a
n
}为一个等比数列,其公比为2,首项为
a
1
-
class="stub"1
a
1
=
class="stub"8
3
,
所以
a
n
-
class="stub"1
a
n
=
class="stub"8
3
×
2
n-1
=
2
n+2
3
(n∈
N
*
)
1°
因an>0,由1°式解出an=
class="stub"1
3
(
2
n+1
+
2
2n+2
+9
)
2°
(2)由1°式有Sn+Tn=
(
a
1
-
class="stub"1
a
1
)
2
+(
a
2
-
class="stub"1
a
2
)
2
+…+(
a
n
-
class="stub"1
a
n
)
2
+2n
=
(
2
3
3
)
2
+(
2
4
3
)
2
+(
2
5
3
)
2
++(
2
n+2
3
)
2
+2n
=
class="stub"64
27
(
4
n
-1)+2n(n∈
N
*
)
为使Sn+Tn=
class="stub"64
27
(
4
n
-1)+2n(n∈
N
*
)
为整数,
当且仅当
4
n
-1
27
为整数.
当n=1,2时,显然Sn+Tn不为整数,
当n33时,4n-1=(1+3)n-1=Cn1×3+Cn2×32+33(Cn3++3n-3Cnn)
∴只需
3
C
1n
+
3
2
C
2n
27
=
class="stub"n
9
•
class="stub"3n-1
2
为整数,
因为3n-1与3互质,
所以为9的整数倍.
当n=9时,
class="stub"n
9
•
class="stub"3n-1
2
=13为整数,
故n的最小值为9.
上一篇 :
设等差数列{an}的前n项和为Sn,
下一篇 :
数列{an}中,a1=1,且a1,a2-a1,a3-a2
搜索答案
更多内容推荐
已知数列{an}是首项为1,公比为13的等比数列.(1)求an的表达式;(2)如果bn=(2n-1)an,求{bn}的前n项和Sn.-高二数学
设数列{an}的通项为an=2n-10(n∈N+),则|a1|+|a2|+…+|a15|=______.-数学
已知数列{an}的前n项和为Sn,a1=1,2Sn=an+1,则Sn=()A.2n-1B.2n-1C.3n-1D.12(3n-1)-数学
已知数列{an}的前n项和Sn=n2an(n≥2),a1=1,则an=()A.2(n+1)2B.2n(n+1)C.12n-1D.12n-1-数学
已知n是正整数,数列{an}的前n项和为Sn,数列{nan}的前n项和为Tn.对任何正整数n,等式Sn=-an+12(n-3)都成立.(I)求数列{an}的通项公式;(II)求Tn;(III)设An=
在一个数列中,如果∀n∈N°,都有anan+1an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列an是等积数列,且a1=1,a2=2,公积为8,则a1+a2+a3+…+
一个等比数列的前n项之和是2n-b,那么它的前n项的各项平方之和为()A.(2n-1)2B.13(2n-1)C.4n-1D.13(4n-1)-高二数学
在等差数列{an}中,a3+a4+a5=84,a9=73.(Ⅰ)求数列{an}的通项公式;(Ⅱ)对任意m∈N*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和S
项数为n的数列a1,a2,a3,…,an的前k项和为Sk(k=1,2,3,…,n),定义S1+S2+…+Snn为该项数列的“凯森和”,如果项数为99项的数列a1,a2,a3,…,a99的“凯森和”为1
在等差数列{an}中,a1=-2012,其前n项和为Sn,若S1212-S1010=2,则S2012的值等于()A.-2011B.-2012C.-2010D.-2013-数学
(教材江苏版第62页习题7)(1)已知数列an的通项公式为an=1n(n+1),则前n项的和______;(2)已知数列an的通项公式为an=1n+n+1,则前n项的和______.-数学
已知数列{an}满足an=1n+n+1,则其前99项和S99=______.-数学
设数列a1,a2,…,an,…满足a1=a2=1,a3=2,且对任何自然数n,都有anan+1an+2≠1,又anan+1an+2an+3=an+an+1+an+2+an+3,则a1+a2+…+a10
已知数列{an}对于任意的p、q∈N*,满足ap+q=ap+aq且a2=2,则1a1a2+1a2a3+…+1a2008a2009=______.-数学
已知f(x)=2x-1,g(x)=-2x,数列{an}(n∈N*)的各项都是整数,其前n项和为Sn,若点(a2n-1,a2n)在函数y=f(x)或y=g(x)的图象上,且当n为偶数时,an=n2,则(
已知{bn}是公比大于1的等比数列,它的前n项和为Sn,若S3=14,b1+8,3b2,b3+6成等差数列,且a1=1,an=bn•(1b1+1b2+…+1bn-1)(n≥2).(1)求bn;(2)求
已知数列{an}为等差数列,a3=3,a1+a2+…+a6=21,数列(1an)的前n项和为Sn,若对一切n∈N*,恒有S2n-Sn>m16,则m能取到的最大正整数是______.-数学
在数列{an}中,a1=1,an+1•an=8(Ⅰ)求a2,a3;(Ⅱ)设bn=log2an,求证:{bn-2}为等比数列;(Ⅲ)求{an}的前n项积Tn.-高二数学
设数列{an}的前n项和为Sn,且满足Sn=2-an,(n=1,2,3,…)(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an,求数列{bn}的通项公式;(Ⅲ)c
(1)数列an的前n项和Sn=n2+1.则数列an的通项公式为______;(2)设数列an的前n项和为Sn=2n2,则数列an的通项公式为______.-数学
设Sn为数列{an}前n项和,对任意的n∈N*,都有Sn=2-an,数列{bn}满足bn=bn-11+bn-1,b1=2a1,(1)求证:数列{an}是等比数列,并求{an}的通项公式;(2)求数列{
设Sn=12+16+112+…+1n(n+1)(n∈N*),且Sn+1•Sn+2=34,则n的值是______.-数学
已知数列{an}的前n项和为Sn=n2+n,数列{bn}满足b1+3b2+32b3+…+3n-1bn=an,n∈N*.(1)求数列{an},{bn}的通项公式;(2)求数列{bn}的前n项和Tn.-数
已知数列{an}中各项为:12、1122、111222、11…1个n22…2n个(1)证明这个数列中的每一项都是两个相邻整数的积.(2)求这个数列前n项之和Sn.-数学
已知点(1,13)是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=Sn+Sn-1(n
设{an}是公差不为0的等差数列,a1=2且a1,a3,a6成等比数列,则{an}的前5项和S5=()A.10B.15C.20D.30-数学
在等差数列是{an}中,已知a4与a2与a8的等比中项,a3+2是a2与a6的等差中项,Sn是前n项和,则满足911<1S1+1S2+1S3+…+1Sn<1921(n∈N*)的所有n值的和为_____
已知各项都不为零的数列{an}的前n项和为Sn,且Sn=12anan+1(n∈N*),a1=1.(1)求数列{an}的通项公式;(2)求证:1a12+1a22+1a32+…+1an2<74.-数学
已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=()A.1-4nB.4n-1C.1-4n3D.4n-1
已知数列{an}的前n项和为Sn,若a1=12且an+2Sn•Sn-1=0(n≥2).(Ⅰ)求证{1Sn}是等差数列,并求出an的表达式;(Ⅱ)若bn=2(1-n)an(n≥2),求证b22+b32+
已知一次函数f(x)的图象关于直线y=x对称的图象为C,且f[f(1)]=-1,若点(n,an+1an)(n∈N+)在曲线C上,并有a1=1,an+1an-anan-1=1(n≥2)(1)求f(x)的
设数列{an}的前n项和为Sn=2an-2n(Ⅰ)求a1,a2(Ⅱ)设cn=an+1-2an,证明:数列{cn}是等比数列(Ⅲ)求数列{n+12cn}的前n项和为Tn.-高二数学
已知等差数列{an}的首项a1=20,前n项和记为Sn,满足S10=S15,求n取何值时,Sn取得最大值,并求出最大值.-数学
数列{an}的前n项和为sn,a1=1,an+1=2sn+1,(n≥1),等差数列{bn}的各项均为正数,前n项和为Bn,且B3=15,又a1+b1,a2+b2,a3+b3成等比数列.(1)求数列{a
已知数列{an}的前n项和为Sn,且点(n,Sn)在函数y=2x-1-2的图象上.(I)求数列{an}的通项公式;(II)设数列{bn}满足:b1=0,bn+1+bn=an,求数列{bn}的前n项和公
给定有限单调递增数列{xn}(n∈N*,n≥2)且xi≠0(1≤i≤n),定义集合A={(xi,xj)|1≤i,j≤n,且i,j∈N*}.若对任意点A1∈A,存在点A2∈A使得OA1⊥OA2(O为坐标
已知数列{an}满足an+1=an-an-1(n≥2),a1=1,a2=3,记Sn=a1+a2+…+an,则下列结论正确的是()A.S102=0B.S102=1C.S102=3D.S102=4-数学
数列{an}的前n项和为Sn,且an=nsinnπ2+12,则S2012=______.-数学
已知a1=1,a2=4,an+2=4an+1+an,bn=an+1an,n∈N*,(Ⅰ)求b1,b2,b3的值;(Ⅱ)设cn=bnbn+1,Sn为数列{cn}的前n项和,求证:Sn≥17n;(Ⅲ)求证
已知数列{an}是等差数列,且a1=2,a1+a2+a3=12(Ⅰ)求数列{an}的通项公式(Ⅱ)令bn=an+2n,求数列{bn}前n项和Sn.-高二数学
已知数列{an}是等差数列,且a2=7,a5=16,数列{bn}是各项为正数的数列,且b1=2,点(log2bn,log2bn+1)在直线y=x+1上.(1)求{an}、{bn}的通项公式;(2)设c
已知数列{an}的前n项和为Sn,常数λ>0,且λa1an=S1+Sn对一切正整数n都成立.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设a1>0,λ=100,当n为何值时,数列{lg1an}的前n项和最大
对于任意n∈N*,抛物线y=(n2+n)x2-(2n+1)x+1与x轴交于An,Bn两点,以|AnBn|表示该两点的距离,则|A1B1|+|A2B2|+…+|A1999B1999|的值是()A.199
设数列{an}为各项均为1的无穷数列,若在数列{an}的首项a1后面插入1,隔2项,即a3后面插入2,再隔3项,即a6后面插入3,…这样得到一个新数列{bn},则数列{bn}的前2010项的和为-数学
已知函数f(x)=4x+1,g(x)=2x,x∈R,数列{an},{bn},{cn}满足条件:a1=1,an=f(bn)=g(bn+1)(n∈N*),cn=1[12f(n)+12][g(n)+3].(
已知数列{an}为等差数列,Sn为前n项和,且S3=9,S8=64.(Ⅰ)求数列{an}通项公式;(Ⅱ)令bn=an(12)n,Tn=b1+b2+…+bn,求Tn.-高三数学
求数列112,214,318,4116,…前n项的和.-数学
已知函数f(x)=2x+33x,数列{an}满足a1=1,an+1=f(1an),n∈N*.(1)求数列{an}的通项公式;(2)令Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-
已知数列{an}满足an=an+1+4,a18+a20=12,等比数列{bn}的首项为2,公比为q.(Ⅰ)若q=3,问b3等于数列{an}中的第几项?(Ⅱ)数列{an}和{bn}的前n项和分别记为Sn
已知数列{an}的前n项和Sn=13n(n+1)(n+2),试求数列{1an}的前n项和.-数学
返回顶部
题目简介
已知各项均为正数的数列{an},满足:a1=3,且2an+1-an2an-an+1=anan+1,n∈N*.(1)求数列{an}的通项公式;(2)设Sn=a12+a22+…+an2,Tn=1a21+1
题目详情
(1)求数列{an}的通项公式;
(2)设Sn=a12+a22+…+an2,Tn=
答案
因此{an-
所以an-
因an>0,由1°式解出an=
(2)由1°式有Sn+Tn=(a1-
=(
=
为使Sn+Tn=
当且仅当
当n=1,2时,显然Sn+Tn不为整数,
当n33时,4n-1=(1+3)n-1=Cn1×3+Cn2×32+33(Cn3++3n-3Cnn)
∴只需
因为3n-1与3互质,
所以为9的整数倍.
当n=9时,
故n的最小值为9.