设等差数列{an}的前n项和为Sn,且a3=6,S10=110.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{bn}前n项和为Tn,且Tn=1-(22)an,令cn=anbn(n∈N*).求数列{cn

题目简介

设等差数列{an}的前n项和为Sn,且a3=6,S10=110.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{bn}前n项和为Tn,且Tn=1-(22)an,令cn=anbn(n∈N*).求数列{cn

题目详情

设等差数列{an}的前n项和为Sn,且a3=6,S10=110.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}前n项和为Tn,且Tn=1-(
2
2
)an
,令cn=anbn(n∈N*).求数列{cn}的前n项和Rn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)设等差数列{an}的公差为d,
∵a3=6,S10=110.
∴a1+2d=6,10a1+class="stub"10×9
2
d=110

解得a1=2,d=2,
∴数列{an}的通项公式an=2+(n-1)•2=2n;
(Ⅱ)∵Tn=1-(
2
2
)an=1-(
2
2
)2n=1-(class="stub"1
2
)n

当n=1时,b1=T1=1-(
2
2
)2
=class="stub"1
2

当n≥2时,bn=Tn-Tn-1=1-(class="stub"1
2
)n-[1-(class="stub"1
2
)n-1]
=(class="stub"1
2
)n

且n=1时满足,
∴数列{an}的通项公式为bn=(class="stub"1
2
)n

又an=2n,
cn=class="stub"2n
2n
=class="stub"n
2n-1

Rn=class="stub"1
20
+class="stub"2
21
+class="stub"3
22
+…+class="stub"n
2n-1

class="stub"1
2
Rn=class="stub"1
2
+class="stub"2
22
+class="stub"3
23
+…+class="stub"n
2n

两式相减得:class="stub"1
2
Rn=class="stub"1
20
+class="stub"1
21
+class="stub"1
22
+…+class="stub"1
2n-1
-class="stub"n
2n
=
1-class="stub"1
2n
1-class="stub"1
2
-class="stub"n
2n
=2-class="stub"n+2
2n

Rn=4-class="stub"n+2
2n-1

更多内容推荐