已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=()A.1-4nB.4n-1C.1-4n3D.4n-1

题目简介

已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=()A.1-4nB.4n-1C.1-4n3D.4n-1

题目详情

已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )
A.1-4nB.4n-1C.
1-4n
3
D.
4n-1
3
题型:单选题难度:中档来源:顺义区二模

答案

q=an-an-1=(-4n+5)-[-4(n-1)+5]=-4,b1=a2=-4×2+5=-3,
所以bn=b1qn-1=-3•(-4)n-1,|bn|=|-3•(-4)n-1|=3•4n-1,
所以|b1|+|b2|+…+|bn|=3+3•4+3•42+…+3•4n-1=3•
1-4n
1-4
=4n-1,
故选B.

更多内容推荐