函数f(x)对任意x∈R都有f(x)+f(1-x)=12.(1)求f(12)和f(1n)+f(n-1n)(n∈N)的值;(2)数列{an}满足an=f(0)+f(1n)+f(2n)+…+f(n-1n)

题目简介

函数f(x)对任意x∈R都有f(x)+f(1-x)=12.(1)求f(12)和f(1n)+f(n-1n)(n∈N)的值;(2)数列{an}满足an=f(0)+f(1n)+f(2n)+…+f(n-1n)

题目详情

函数f(x)对任意x∈R都有f(x)+f(1-x)=
1
2

(1)求f(
1
2
)
f(
1
n
)+f(
n-1
n
)(n∈N)
的值;
(2)数列{an}满足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)
,求数列{an}的通项公式.
(3)令bn=
4
4an-1
Tn=
b21
+
b22
+
b23
+…+
b2n
Sn=32-
16
n
试比较Tn与Sn的大小.
题型:解答题难度:中档来源:不详

答案

(1)令x=class="stub"1
2
,得f(class="stub"1
2
) =class="stub"1
4

x=class="stub"1
n
得f(class="stub"1
n
)+f(1-class="stub"1
n
)=class="stub"1
2
=f(class="stub"1
n
)+f(class="stub"n-1
n
)

(2)an=f(0)+f(class="stub"1
n
)++f(class="stub"n-1
n
)+f(1)

an=f(1)+f(class="stub"n-1
n
)++f(class="stub"1
n
)+f(0)

两式相加2an=[f(0)+f(1)]+[f(class="stub"1
n
)+f(class="stub"n-1
n
)]++[f(1)+f(0)]

=class="stub"n+1
2
,∴an=class="stub"n+1
4

(3)bn=class="stub"4
4an-1
=class="stub"4
n
Tn=
b21
+
b22
++
b2n
=16(1+class="stub"1
22
+class="stub"1
32
++class="stub"1
n2

<16[1+class="stub"1
1×2
+class="stub"1
2×3
+…+class="stub"1
n(n-1)
]
=16[1+(1-class="stub"1
2
)+(class="stub"1
2
-class="stub"1
3
)++(class="stub"1
n-1
-class="stub"1
n
)]

=16(2-class="stub"1
n
)
=32-class="stub"16
n
=Sn

∴Tn≤Sn

更多内容推荐