已知数列{an}的前n项和为Sn,a1=1,Sn+1=Sn+2an+1(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=nan+1(n∈N+),求数列{bn}的前n项和Tn.-数学

题目简介

已知数列{an}的前n项和为Sn,a1=1,Sn+1=Sn+2an+1(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=nan+1(n∈N+),求数列{bn}的前n项和Tn.-数学

题目详情

已知数列{an}的前n项和为Sn,a1=1,Sn+1=Sn+2an+1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
n
an+1
(n∈N+)
,求数列{bn}的前n项和Tn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵Sn+1=Sn+2an+1,∴an+1=2an+1
∴an+1+1=2(an+1)
∵a1=1,∴a1+1=2,∴{an+1}是以2为首项,2为公比的等比数列
∴an+1=2n
∴an=2n-1;
(Ⅱ)bn=class="stub"n
an+1
=n•(class="stub"1
2
)n

∴Tn=1×class="stub"1
2
+2×(class="stub"1
2
)2
+…+n•(class="stub"1
2
)
n

class="stub"1
2
Tn=1×(class="stub"1
2
)2
+…+(n-1)•(class="stub"1
2
)
n
+n•(class="stub"1
2
)
n+1

①-②可得:class="stub"1
2
Tn=class="stub"1
2
+(class="stub"1
2
)2
+…+(class="stub"1
2
)
n
-n•(class="stub"1
2
)
n+1
=
class="stub"1
2
[1-(class="stub"1
2
)n]
1-class="stub"1
2
-n•(class="stub"1
2
)
n+1
=1-(class="stub"1
2
)
n
-n•(class="stub"1
2
)
n+1

∴Tn=2-(class="stub"1
2
)
n-1
-n•(class="stub"1
2
)
n

更多内容推荐