对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*).对正整数k,规定{△kan}为{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an=

题目简介

对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*).对正整数k,规定{△kan}为{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an=

题目详情

对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*).对正整数k,规定 {△kan}为{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(Ⅰ)若数列{an}的首项a1=1,且满足△2an-△an+1+an=-2n,求数列{an}的通项公式;
(Ⅱ)对(Ⅰ)中的数列{an},若数列{bn}是等差数列,使得b1Cn1+b2Cn2+b3Cn3+…+bn-1Cnn-1+bnCnn=an对一切正整数n∈N*都成立,求bn
(Ⅲ) 在(Ⅱ)的条件下,令cn=(2n-1)bn,设Tn=
c1
a1
+
c2
a2
+
c3
a3
+…+
cn
an
,若Tn<m成立,求最小正整数m的值.
题型:解答题难度:中档来源:东城区模拟

答案

(Ⅰ)由△2an-△an+1+an=-2n及△2an=△an+1-△an,
得△an-an=2n,
∴an+1-2an=2n,
an+1
2n+1
-
an
2n
=class="stub"1
2
,---------------(2分)
∴数列{
an
2n
}
是首项为class="stub"1
2
,公差为class="stub"1
2
的等差数列,
an
2n
=class="stub"1
2
+(n-1)×class="stub"1
2

∴an=n•2n-1.--------(4分)
(Ⅱ)∵b1Cn1+b2Cn2+b3Cn3+…+bn-1Cnn-1+bnCnn=an,
∴b1Cn1+b2Cn2+b3Cn3+…+bn-1Cnn-1+bnCnn=n•2n-1.
∵kCnk=nCn-1k-1,
C1n
+2
C2n
+3
C3n
+…+(n-1)
Cn-1n
+n
Cnn
=n
C0n-1
+n
C1n-1
+n
C2n-1
+…+n
Cn-1n-1
=n(
C0n-1
+
C1n-1
+
C2n-1
+…+
Cn-1n-1
)=n•2n-1.

∴bn=n.------------(9分)
(Ⅲ)由(Ⅱ)得  
Tn=class="stub"1
1
+class="stub"3
2
+class="stub"5
22
+…+class="stub"2n-1
2n-1
,①
  class="stub"1
2
Tn=class="stub"1
2
+class="stub"3
22
+class="stub"5
23
+…+class="stub"2n-1
2n
,②
①-②得 class="stub"1
2
Tn=1+1+class="stub"1
2
+class="stub"1
22
+class="stub"1
23
+…+class="stub"1
2n-2
-class="stub"2n-1
2n
=3-class="stub"1
2n-2
-class="stub"2n-1
2n

∴Tn=6-class="stub"1
2n-3
-class="stub"2n-1
2n-1
<6,----------(10分)
又Tn=class="stub"1
1
+class="stub"3
2
+class="stub"5
22
+…+class="stub"2n-1
2n-1

∴Tn+1-Tn>0,
∴{Tn}是递增数列,且T6=6-class="stub"1
23
-class="stub"11
25
>5,
∴满足条件的最小正整数m的值为6.--------(13分)

更多内容推荐