优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*).对正整数k,规定{△kan}为{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an=
对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*).对正整数k,规定{△kan}为{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an=
题目简介
对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*).对正整数k,规定{△kan}为{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an=
题目详情
对数列{a
n
},规定{△a
n
}为数列{a
n
}的一阶差分数列,其中△a
n
=a
n+1
-a
n
(n∈N
*
).对正整数k,规定 {△
k
a
n
}为{a
n
}的k阶差分数列,其中△
k
a
n
=△
k-1
a
n+1
-△
k-1
a
n
=△(△
k-1
a
n
).
(Ⅰ)若数列{a
n
}的首项a
1
=1,且满足△
2
a
n
-△a
n+1
+a
n
=-2
n
,求数列{a
n
}的通项公式;
(Ⅱ)对(Ⅰ)中的数列{a
n
},若数列{b
n
}是等差数列,使得b
1
C
n
1
+b
2
C
n
2
+b
3
C
n
3
+…+b
n-1
C
n
n-1
+b
n
C
n
n
=a
n
对一切正整数n∈N
*
都成立,求b
n
;
(Ⅲ) 在(Ⅱ)的条件下,令c
n
=(2n-1)b
n
,设
T
n
=
c
1
a
1
+
c
2
a
2
+
c
3
a
3
+…+
c
n
a
n
,若T
n
<m成立,求最小正整数m的值.
题型:解答题
难度:中档
来源:东城区模拟
答案
(Ⅰ)由△2an-△an+1+an=-2n及△2an=△an+1-△an,
得△an-an=2n,
∴an+1-2an=2n,
∴
a
n+1
2
n+1
-
a
n
2
n
=
class="stub"1
2
,---------------(2分)
∴数列
{
a
n
2
n
}
是首项为
class="stub"1
2
,公差为
class="stub"1
2
的等差数列,
∴
a
n
2
n
=
class="stub"1
2
+(n-1)×
class="stub"1
2
,
∴an=n•2n-1.--------(4分)
(Ⅱ)∵b1Cn1+b2Cn2+b3Cn3+…+bn-1Cnn-1+bnCnn=an,
∴b1Cn1+b2Cn2+b3Cn3+…+bn-1Cnn-1+bnCnn=n•2n-1.
∵kCnk=nCn-1k-1,
∴
C
1n
+2
C
2n
+3
C
3n
+…+(n-1)
C
n-1n
+n
C
nn
=n
C
0n-1
+n
C
1n-1
+n
C
2n-1
+…+n
C
n-1n-1
=n(
C
0n-1
+
C
1n-1
+
C
2n-1
+…+
C
n-1n-1
)=n•
2
n-1
.
∴bn=n.------------(9分)
(Ⅲ)由(Ⅱ)得
Tn=
class="stub"1
1
+
class="stub"3
2
+
class="stub"5
2
2
+…+
class="stub"2n-1
2
n-1
,①
class="stub"1
2
T
n
=
class="stub"1
2
+
class="stub"3
2
2
+
class="stub"5
2
3
+…+
class="stub"2n-1
2
n
,②
①-②得
class="stub"1
2
T
n
=1+1+
class="stub"1
2
+
class="stub"1
2
2
+
class="stub"1
2
3
+…+
class="stub"1
2
n-2
-
class="stub"2n-1
2
n
=3-
class="stub"1
2
n-2
-
class="stub"2n-1
2
n
,
∴Tn=6-
class="stub"1
2
n-3
-
class="stub"2n-1
2
n-1
<6,----------(10分)
又Tn=
class="stub"1
1
+
class="stub"3
2
+
class="stub"5
2
2
+…+
class="stub"2n-1
2
n-1
,
∴Tn+1-Tn>0,
∴{Tn}是递增数列,且T6=6-
class="stub"1
2
3
-
class="stub"11
2
5
>5,
∴满足条件的最小正整数m的值为6.--------(13分)
上一篇 :
数列an=log2n+1n+2(n∈N*),设其
下一篇 :
已知数列{an}是各项均不为0的
搜索答案
更多内容推荐
设f(x)=14x+2,利用课本中推导等差数列前n项和的公式的方法,可求得f(-3)+f(-2)+…+f(0)+…+f(3)+f(4)的值为______.-数学
数列{an}:a1=1,a2=3,a3=2,an+2=an+1-an,求S2002.-数学
已知公比不为1的等比数列{an}的首项为1,若3a1,2a2,a3成等差数列,则数列{1an}的前5项和为()A.12181B.3116C.121D.31-数学
设函数f(x)=a1+a2x+a3x2+…+anxn-1,f(0)=12,数列{an}满f(1)=n2an(n∈N*),则数列{an}的前n项和Sn等于______.-数学
设数列{an}的前n项和Sn,令Tn=S1+S2+…+Snn,称Tn为数列a1,a2…an的“理想数”,已知数a1,a2…a501的“理想数”为2008,那么数列3,a1,a2…a501的“理想数”为
设数列满足a1=2,an+1-an=3•22n-1(1)求数列{an}的通项公式;(2)令bn=nan,求数列的前n项和Sn.-数学
数列{an}中,a1=1,Sn是{an}的前n项和,且Sn+1=Sn+n,n∈N*.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若bn=1Sn+1-1,求数列{bn}的通项公式;(III)若cn=n•2an
定义等积数列{an}:若an•an-1=p(p为非零常数,n≥2),则称{an}为等积数列,p称为公积.若{an}为等积数列,公积为1,首项为a,则a2007=______,S2007=______.
若函数y=f(x)对于任意的x,y∈N*都有f(x+y)=f(x)•f(y)且f(1)=2,则f(2)f(1)+f(3)f(2)+f(4)f(3)+…+f(2007)f(2006)=______.-数
求数列11×3,12×4,13×5,…,1n(n+2),…的前n项和S.-数学
设f(x),g(x)是定义在R上的恒不为零的函数,对任意x,y∈R,都有f(x)f(y)=f(x+y),g(x)+g(y)=g(x+y),若a1=12,an=f(n)(n∈N*),且b1=1,bn=g
数列{an}的前n项和为Sn=npan(n∈N*)且a1≠a2,(1)求常数p的值;(2)证明:数列{an}是等差数列.-数学
已知数列{an}是首项a1=1的等比数列,其前n项和Sn中,S3、S4、S2成等差数列.(1)求数列{an}的通项公式;(2)设bn=2log12|an|+1,求数列{bn}的前n项和为Tn;(3)求
已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),数列{bn}满足b1=1,且点P(bn,bn+1)(n∈N*)在直线y=x+2上.(Ⅰ)求数列{an}、{bn}的通项公式;(Ⅱ)求数
已知函数f(x)=logmx(mm为常数,0<m<1),且数列{f(an)}是首项为2,公差为2的等差数列.(1)若bn=an•f(an),当m=22时,求数列{bn}的前n项和Sn;(2)设cn=a
数列{an}的通项an=n2(cos2nπ3-sin2nπ3),其前n项和为Sn,(1)求Sn;(2)bn=S3nn•4n,求数列{bn}的前n项和Tn.-数学
求证:C0n+3C1n+5C2n+…+(2n+1)Cnn=(n+1)2n.-数学
数列{an}的通项公式为an=1n+n+1,其前n项之和为10,则在平面直角坐标系中,直线(n+1)x+y+n=0在y轴上的截距为______.-数学
在等差数列{an}中,若前11项和S11=11,则a2+a5+a7+a10=()A.5B.6C.4D.8-数学
已知数列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N).(1)写出a2、a3的值(只写结果)并求出数列{an}的通项公式;(2)设bn=1an+1+1an+2+1an+3+…+1a2
已知数列{an}的前n项和Sn=2n+n﹣1,则a1+a3=().-高三数学
记n项正项数列为a1,a2,…,an,Tn为前n项的积,定义nT1T2…Tn为“叠乘积”.如果有1618项的正项数列a1,a2,…,a1618的“叠乘积”为21619,则有1619项数列2,a1,a2
已知数列{an}、{bn}满足:,an+bn=1,.(Ⅰ)求数列{bn}的通项公式;(Ⅱ)若,求数列{cn}的前n项和Sn.-高三数学
已知函数f(x)=7x+5x+1,数列{an}满足:2an+1-2an+an+1an=0且an≠0.数列{bn}中,b1=f(0)且bn=f(an-1)(1)求证:数列{1an}是等差数列;(2)求数
已知数列{an}满足:a1=1;an+1-an=1,n∈N*.数列{bn}的前n项和为Sn,且Sn+bn=2,n∈N*.(1)求数列{an}、{bn}的通项公式;(2)令数列{cn}满足cn=an•b
已知数列{an}的前n项和Sn满足:Sn=aa-1(an-1)(其中a为常数且a≠0,a≠1,n∈N*)(1)求数列{an}的通项公式;(2)记bn=nan,求数列{bn}的前n项和Tn.-数学
数列{an}的通项公式an=n+1-n(n∈N*),若前n项的和Sn=10,则项数n为()A.10B.11C.120D.121-数学
已知函数f(x)=x2x+1,数列{an}满足a1=f(1),an+1=f(an)(n∈N*).(Ⅰ)求a1,a2的值;(Ⅱ)求数列{an}的通项公式;(Ⅲ)设bn=an•an+1,求数列{bn}的前
求和W=C0n+4C1n+7C2n+10C3n+…+(3n+1)Cnn.-数学
在数列{an}中,a1=2,an+1-2an=0(n∈N+),bn是an和an+1的等差中项,设Sn为数列{bn}的前n项和,则S6=()。-高二数学
已知数列{an}的前n项和为Sn,且Sn=2-n+2nan(n∈N*).(I)求证:an+1an=n+12n;(II)求an及Sn;(III)求证:a21+a22+a23+…+a2n<4964.-数学
在数列{an}中,已知a1=1,an=an-1+an-2+…+a2+a1(n∈N*,n≥2).(1)求数列{an}的通项公式;(2)若bn=log2an,1b3b4+1b4b5+…+1bnbn+1<m
已知数列{an}满足an+1=an3-2an,a1=14.(1)令bn=1an-1(n∈N+)求数列{bn}的通项公式;(2)求满足am+am+1+…+a2m-1<1150的最小正整数m的值.-数学
数列{an}的前n项和为Sn,若an=1n(n+2),则S10等于()A.175264B.7255C.1012D.1112-数学
若数列{an}满足an=1n(n+1),则数列{an}的前n项和Sn公式为______.-数学
设各项为正的数列{an},其前n项和为Sn,并且对所有正整数n,an与2的等差中项等于Sn与2的等比中项.(1)写出数列{an}的前二项;(2)求数列{an}的通项公式(写出推证过程);(3)令b-数
已知数列{an}的前n项和Sn=2n2-3n(1)证明数列{an}是等差数列.(2)若bn=an·2n,求数列{bn}的前n项和Tn.-高三数学
已知{an}为等比数列,a1=1,前n项和为Sn,且S6S3=28,数列{bn}的前n项和为Tn,且点(n,Tn)均在抛物线y=12x2+12x上.(1)求{an}和{bn}的通项公式;(2)设cn=
已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列{1anan+1}的前2013项和为______.-数学
设正数数列{an}的前n项之和为Sn满足Sn=(an+12)2①先求出a1,a2,a3,a4的值,然后猜想数列{an}的通项公式,并用数学归纳法加以证明.②设bn=1anan+1,数列{bn}的前n项
已知数列{an}满足:a1=2,an+1=an+1n(n+1),n∈N*.(I)求数列{an}的通项公式an;(II)设bn=n2nan(n∈N*),求数列{bn}的前n项和Sn.-数学
求和:Sn=(x+1x)2+(x2+1x2)2+…+(xn+1xn)2.-数学
已知x轴上有一列点P1,P2P3,…,Pn,…,当n≥2时,点Pn是把线段Pn-1Pn+1作n等分的分点中最靠近Pn+1的点,设线段P1P2,P2P3,P3P4,…,PnPn+1的长度分别为a1,a2
已知等差数列{an}的公差d>0,其前n项和为Sn,若S3=12,且2a1,a2,1+a3成等比数列.(I)求{an}的通项公式;(II)记bn=1anan+1(n∈N*),求数列{bn}的前n项和T
设正数数列{an}的前n项和Sn满足.(I)求数列{an}的通项公式;(II)设,求数列{bn}的前n项和Tn-高一数学
定义nx1+x2+…xn为n个正数x1,x2,…,xn的“平均倒数”.若正项数列{an}的前n项的“平均倒数”为12n+1,则数列{an}的通项公式为an=()A.2n+1B.2n-1C.4n-1D.
数列{an}的通项公式an=ncosnπ2,其前项和为Sn,则S2013等于()A.1006B.2012C.503D.0-数学
各项均为正数的数列{an},a1=12,a2=45,且对满足m+n=p+q的任意正整数m,n,p,q都有am+an(1+am)(1+an)=ap+aq(1+ap)(1+aq)(I)求通项an;(II)
数列{an}满足:a1=1,且对任意的m,n∈N*都有:am+n=am+an+mn,则1a1+1a2+1a3+…+1a2011=()A.20102011B.20111006C.20112012D.20
已知数列{an}的前n项和为Sn,且an=12(3n+Sn)对一切正整数n成立(I)求出数列{an}的通项公式;(II)设bn=n3an,求数列{bn}的前n项和Bn.-数学
返回顶部
题目简介
对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*).对正整数k,规定{△kan}为{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an=
题目详情
(Ⅰ)若数列{an}的首项a1=1,且满足△2an-△an+1+an=-2n,求数列{an}的通项公式;
(Ⅱ)对(Ⅰ)中的数列{an},若数列{bn}是等差数列,使得b1Cn1+b2Cn2+b3Cn3+…+bn-1Cnn-1+bnCnn=an对一切正整数n∈N*都成立,求bn;
(Ⅲ) 在(Ⅱ)的条件下,令cn=(2n-1)bn,设Tn=
答案
得△an-an=2n,
∴an+1-2an=2n,
∴
∴数列{
∴
∴an=n•2n-1.--------(4分)
(Ⅱ)∵b1Cn1+b2Cn2+b3Cn3+…+bn-1Cnn-1+bnCnn=an,
∴b1Cn1+b2Cn2+b3Cn3+…+bn-1Cnn-1+bnCnn=n•2n-1.
∵kCnk=nCn-1k-1,
∴bn=n.------------(9分)
(Ⅲ)由(Ⅱ)得
Tn=
①-②得
∴Tn=6-
又Tn=
∴Tn+1-Tn>0,
∴{Tn}是递增数列,且T6=6-
∴满足条件的最小正整数m的值为6.--------(13分)