已知数列{an}的前n项和为Sn,且Sn=2-n+2nan(n∈N*).(I)求证:an+1an=n+12n;(II)求an及Sn;(III)求证:a21+a22+a23+…+a2n<4964.-数学

题目简介

已知数列{an}的前n项和为Sn,且Sn=2-n+2nan(n∈N*).(I)求证:an+1an=n+12n;(II)求an及Sn;(III)求证:a21+a22+a23+…+a2n<4964.-数学

题目详情

已知数列{an}的前n项和为Sn,且Sn=2-
n+2
n
an(n∈N*)

(I)求证:
an+1
an
=
n+1
2n

(II)求an及Sn
(III)求证:
a21
+
a22
+
a23
+…+
a2n
49
64
题型:解答题难度:中档来源:不详

答案

( I)Sn=2-class="stub"n+2
n
an(n∈N*)
,(1)Sn+1=2-class="stub"n+3
n+1
an+1
,(2)(2分)
(2)-(1),得an+1=class="stub"n+2
n
an-class="stub"n+3
n+1
an+1
,∴
an+1
an
=class="stub"n+1
2n
.(3分)
( II)当n=1时,a1=S1=2-class="stub"1+2
1
a1a1=class="stub"1
2
;                          (4分)
由( I),得an=a1
a2
a1
a3
a2
a4
a3
•…•
an
an-1
=class="stub"1
2
•class="stub"2
2×1
•class="stub"3
2×2
•class="stub"4
2×3
•…•class="stub"n
2(n-1)
=class="stub"n
2n

an=class="stub"n
2n
                                             (7分)
an=class="stub"n
2n
代入Sn=2-class="stub"n+2
n
an(n∈N*)
,得Sn=
2n+1-n-2
2n
.(8分)
( III)由an=class="stub"n
2n
,则即证(class="stub"1
2
)2+(class="stub"2
22
)2+(class="stub"3
23
)2+…+(class="stub"n
2n
)2<class="stub"49
64

下证:当n≥4,n∈N*时,2n≥n2.
①当n=4时,24=42,成立;当n=5时,25>52,成立;              (9分)
②假设当n=k(k≥4,k∈N*)时,成立,即2k≥k2,则
当n=k+1时,2k+1≥2k2,令f(k)=2k2-(k+1)2=k2-2k-1,k≥4,k∈N*,当k=4时有最小值7,故2k2>(k+1)2,
∴2k+1≥(k+1)2,即n=k+1成立;
由①②得结论成立.(11分)
于是,(class="stub"k
2k
)2<class="stub"1
2k

令k=4,5,6,…,n,各式相加,得(class="stub"4
24
)2+(class="stub"5
25
)2+(class="stub"6
26
)2+…+(class="stub"n
2n
)2<class="stub"1
8
-class="stub"1
2n

(class="stub"1
2
)2+(class="stub"2
22
)2+(class="stub"3
23
)2=class="stub"41
64

两式相加,得(class="stub"1
2
)2+(class="stub"2
22
)2+(class="stub"3
23
)2+…+(class="stub"n
2n
)2<class="stub"49
64
-class="stub"1
2n
<class="stub"49
64
.(12分)

更多内容推荐