各项均为正数的数列{an},a1=12,a2=45,且对满足m+n=p+q的任意正整数m,n,p,q都有am+an(1+am)(1+an)=ap+aq(1+ap)(1+aq)(I)求通项an;(II)

题目简介

各项均为正数的数列{an},a1=12,a2=45,且对满足m+n=p+q的任意正整数m,n,p,q都有am+an(1+am)(1+an)=ap+aq(1+ap)(1+aq)(I)求通项an;(II)

题目详情

各项均为正数的数列{an},a1=
1
2
a2=
4
5
,且对满足m+n=p+q的任意正整数m,n,p,q都有
am+an
(1+am)(1+an)
=
ap+aq
(1+ap)(1+aq)

(I)求通项an
(II)记cn=an+1-an(n∈N*),设数列{cn}的前n项和为Tn,求证:对任意正整数n都有Tn
2
3
题型:解答题难度:中档来源:不详

答案

(I)解法一:特征根法,令α=class="stub"2α+1
α+2
得α=1
an-1=
2an-1+1
an-1+2
-1=
an-1-1
an-1+2

class="stub"1
an-1
=
an-1+2
an-1-1
=class="stub"3
an-1-1
+1

再利用构造新数列求通项公式
class="stub"1
an-1
-p=3(class="stub"1
a n-1-1
-p)

class="stub"1
an-1
=class="stub"3
an-1-1
-2p
-2p=1∴p=-class="stub"1
2

class="stub"1
an-1
+class="stub"1
2
=3(class="stub"1
an-1-1
+class="stub"1
2
)
又   class="stub"1
an-1
+class="stub"1
2
=-class="stub"3
2

class="stub"1
an-1
=-class="stub"1
2
3n-class="stub"1
2

an-1=-class="stub"2
3n+1

an=
3n-1
3n+1

解法二:由
am+an
(1+am)(1+an)
=
ap+aq
(1+ap)(1+aq)

a1+an
(1+a1)(1+an)
=
a2+an-1
(1+a2)(1+an-1)

将a1=class="stub"1
2
a2=class="stub"4
5
,代入化简得
an=
2an-1+1
an-1+2

所以
1-an
1+an
=class="stub"1
3
1-an-1
1+an-1

故数列{
1-an
1+an
}为等比数列,从而
1-an
1+an
=class="stub"1
3n
,an=
3n-1
3n+1


(II)∵an=
3n-1
3n+1
=1-class="stub"2
3n+1

cn=an+1-an=1-class="stub"2
3n+1+1
-1+class="stub"2
3n+1
=
4•3n
(3n+1)(3n+1+1)

=
4•3n
32n+1+4•3n+1
=class="stub"4
3n+1+4+class="stub"1
3n
<class="stub"4
3n+1

Tn=c1+c2+…+cn<4(class="stub"1
32
+class="stub"1
33
+…+class="stub"1
3n+1
)=4•
class="stub"1
9
(1-class="stub"1
3n
)
1-class="stub"1
3
=class="stub"2
3
(1-class="stub"1
3n
)<class="stub"2
3

更多内容推荐