已知数列{an}满足:an+1=an+(12)n+1(n∈N*),且a1=1;设bn=12an-34.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若cn=2n-1(n∈N*),求数列{bn•cn}的前n项和

题目简介

已知数列{an}满足:an+1=an+(12)n+1(n∈N*),且a1=1;设bn=12an-34.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若cn=2n-1(n∈N*),求数列{bn•cn}的前n项和

题目详情

已知数列{an}满足:an+1=an+(
1
2
)n+1(n∈N*),且a1=1;设bn=
1
2
an-
3
4

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若cn=2n-1(n∈N*),求数列{bn•cn}的前n项和Sn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵an+1=an+(class="stub"1
2
)n+1(n∈N*),且a1=1

∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=1+(class="stub"1
2
)2+(class="stub"1
2
)3+…+(class="stub"1
n
)n=1+
class="stub"1
4
[1-(class="stub"1
2
)
n-1
]
1-class="stub"1
2
=class="stub"3
2
-(class="stub"1
2
)n

又∵当n=1时,上式也成立,∴an=class="stub"3
2
-(class="stub"1
2
)n(n∈N*)

(Ⅱ)∵bn=class="stub"1
2
an-class="stub"3
4
=class="stub"1
2
[class="stub"3
2
-(class="stub"1
2
)n]-class="stub"3
4
=-class="stub"1
2
n+1
(n∈N*)

又∵cn=2n-1(n∈N*)
∴Sn=b1•c1+b2•c2+…+bn•cn
Sn=-(class="stub"1
2
)2-3×(class="stub"1
2
)3-5×(class="stub"1
2
)4-…-(2n-1)×(class="stub"1
2
)n+1

class="stub"1
2
Sn=-(class="stub"1
2
)3-3×(class="stub"1
2
)4-…-(2n-3)×(class="stub"1
2
)n+1-(2n-1)×(class="stub"1
2
)n+2

①-②得:class="stub"1
2
Sn=-(class="stub"1
2
)2-2×(class="stub"1
2
)3-2×(class="stub"1
2
)4-…-2×(class="stub"1
2
)n+1+(2n-1)×(class="stub"1
2
)n+2

=-class="stub"1
4
-2[(class="stub"1
2
)3+(class="stub"1
2
)4+…+(class="stub"1
2
)n+1]+(2n-1)(class="stub"1
2
)n+2=-class="stub"3
4
+class="stub"2n+3
2n+2

Sn=-class="stub"3
2
+class="stub"2n+3
2n+1

更多内容推荐