优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 已知函数f(x)=ax+b,当x∈[a1,b1]时f(x)的值域为[a2,b2],当x∈[a2,b2]时f(x)的值域为[a3,b3],…依此类推,一般地,当x∈[an-1,bn-1]时f(x)的值域
已知函数f(x)=ax+b,当x∈[a1,b1]时f(x)的值域为[a2,b2],当x∈[a2,b2]时f(x)的值域为[a3,b3],…依此类推,一般地,当x∈[an-1,bn-1]时f(x)的值域
题目简介
已知函数f(x)=ax+b,当x∈[a1,b1]时f(x)的值域为[a2,b2],当x∈[a2,b2]时f(x)的值域为[a3,b3],…依此类推,一般地,当x∈[an-1,bn-1]时f(x)的值域
题目详情
已知函数f(x)=ax+b,当x∈[a
1
,b
1
]时f(x)的值域为[a
2
,b
2
],当x∈[a
2
,b
2
]时f(x)的值域为[a
3
,b
3
],…依此类推,一般地,当x∈[a
n-1
,b
n-1
]时f(x)的值域为[a
n
,b
n
],其中a、b为常数且a
1
=0,b
1
=1
(1)若a=1,求数列{a
n
},{b
n
}的通项公式.
(2)若a>0且a≠1,要使数列{b
n
}是公比不为1的等比数列,求b的值.
(3)若a<0,设数列{a
n
},{b
n
}的前n项和分别为S
n
,T
n
,求(T
1
+T
2
+…+T
2000
)-(S
1
+S
2
+…+S
2000
)的值.
题型:解答题
难度:中档
来源:闸北区一模
答案
(1)a=1时,f(x)=x+b在R上是增函数,
由已知,当n≥2时,x∈[an-1,bn-1],f(x)的值域是[an,bn],
∴an=f(an-1)=an-1+b,bn=f(bn-1)=bn-1+b,
∴{an}、{bn}都是公差为b的等差数列.
∵a1=0,b1=1,
∴an=(n-1)b,bn=(n-1)b+1;
(2)∵a>0,a≠1,
∴f(x)=ax+b在R上也是增函数,
由已知有bn=f(bn-1)=abn-1+b,即bn=abn-1+b(n≥2),
∴
b
n
b
n-1
=a+
class="stub"b
b
n-1
,
若{bn}是公比不为1的等比数列,则
class="stub"b
b
n-1
是常数,所以b=0;
(3)∵a<0,∴f(x)=ax+b在R上是减函数,
由已知可得,bn=f(an-1)=a•an-1+b,an=f(bn-1)=a•bn-1+b,
∴bn-an=-a(bn-1-an-1)(n≥2),
∴{bn-an}是以1为首项,-a为公比的等比数列,
∴bn-an=(-a)n-1,
∴Tn-Sn=(b1-a1)+(b2-a2)+…+(bn-an)=
n,a=-1
1-(-a
)
n
1+a
,a≠-1
,
于是,(T1+T2+…+T2000)-(S1+S2+…+S2000)
=(T1-S1)+(T2-S2)+…+(T2000-S2000)
=
2001000,a=-1
2000+2001a-
a
2001
(1+a
)
2
,a<0,a≠-1
.
上一篇 :
已知数列an=12!+23!+…+n(n+1)
下一篇 :
已知函数f(x)=x2+2x,数列{an}的前
搜索答案
更多内容推荐
已知数列{an}满足:an+1=an+(12)n+1(n∈N*),且a1=1;设bn=12an-34.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若cn=2n-1(n∈N*),求数列{bn•cn}的前n项和
在数列{an}中,a1=0,a2=2,且an+2-an=1+(-1)n(n∈N*),则s100=______.-数学
已知数列{an}的前n项和为Sn,a1=1,Sn+1=Sn+2an+1(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=nan+1(n∈N+),求数列{bn}的前n项和Tn.-数学
数列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n-1,…的前n项和Sn>1020,那么n的最小值是______-数学
已知函数f(x)的定义域为N*,且f(x+1)=f(x)+x,f(1)=0.(1)求f(x)的解析式.(2)设an=1f(n).(n∈N*,n≥2),Sn=a2+a3+a3+…+an,问是否存在最大的
函数f(x)=x3,在等差数列{an}中,a3=7,a1+a2+a3=12,记,令bn=anSn,数列{bn}的前n项和为Tn(1)求{an}的通项公式和Sn(2)求证.-高三数学
已知函数f(x)=ax+bcx2+1(a,b,c为常数,a≠0).(Ⅰ)若c=0时,数列an满足条件:点(n,an)在函数f(x)=ax+bcx2+1的图象上,求an的前n项和Sn;(Ⅱ)在(Ⅰ)的条
已知数列{an}为首项a1≠0,公差为d≠0的等差数列,求Sn=1a1a2+1a2a3+…+1anan+1.-数学
设数列{an}中,若an+1=an+an+2,(n∈N*),则称数列{an}为“凸数列”.(1)设数列{an}为“凸数列”,若a1=1,a2=-2,试写出该数列的前6项,并求出该6项之和;(2)在“凸
已知函数f(x)=ax的图象过点(1,),且点(n-1,)(n∈N*)在函数f(x)=ax的图象上。(1)求数列{an}的通项公式;(2)令bn=an+1-an,若数列{bn}的前n项和为Sn,求证:
已知数列{an}的通项公式为an=1n+1+n求它的前n项的和.-数学
(理)无穷数列{12nsinnπ2}的各项和为______.-数学
对于每个正整数n,抛物线y=(n2+n)x2-(2n+1)x+1与x轴交于两点An、Bn,则|A1B1|+|A2B2|+…+|A2010B2010|的值为______-数学
已知数列{an}的前n项和为Sn,且对任意正整数n,有Sn,a2(a-1)an,n(a≠0,a≠1)成等差数列,令bn=(an+1)lg(an+1).(1)求数列{an}的通项公式an(用a,n表示)
已知数列{an}(n∈N*),首项a1=56,若二次方程anx2-an+1x-1=0的根α、β且满足3α+αβ+3β=1,则数列{an}的前n项和Sn=______.-数学
求和:11×2+12×3+13×4+…+1n×(n+1)()A.nn+1B.n-1nC.n+1n+2D.n+1n-数学
设数列{an}前n项和Sn=n(an+1)2,n∈N*且a2=a,(1)求数列{an}的通项公式an.(2)若a=3,Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1,求T
已知数列{an}是以d为公差的等差数列,数列{bn}是以q为公比的等比数列.(1)若数列{bn}的前n项和为Sn,且a1=b1=d=2,S3<5b2+a88-180,求整数q的值;(2)在(1)的条件
等差数列{an}中,a1=1,前n项和Sn满足条件,(Ⅰ)求数列{an}的通项公式和Sn;(Ⅱ)记bn=an2n﹣1,求数列{bn}的前n项和Tn.-高三数学
等差数列{an}中,a1=3,前n项和为Sn,等比数列{bn}各项均为正数,b1=1,且b2+S2=12,{bn}的公比q=S2b2.(1)求an与bn;(2)求数列{1Sn}的前n项和.-数学
过点P(1,0)作曲线C:y=xk(x∈(0,+∞),k∈N*,k>1)的切线,切点为M1,设M1在x轴上的投影是点P1;又过点P1作曲线C的切线,切点为M2,设M2在x轴上的投影是点P2;…;依此下
求数5,55,555,…,55…5的前n项和Sn.-数学
已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an-3.(1)求数列{an}的通项公式;(2)求Sn值.-数学
化简Sn=n+(n-1)×2+(n-2)×22+…+2×2n-2+2n-1的结果是()A.2n+1+n-2B.2n+1-n+2C.2n-n-2D.2n+1-n-2-数学
已知数列{an}的前n项和是sn=n2-2n+2,(1)求数列{an}的通项公式;(2)令bn=anxn(x∈R且x≠0).求数列{bn}前n项和的公式.-数学
在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2=an(Sn-12).(1)求Sn的表达式;(2)设bn=2nSn,求{bn}的前n项和Tn.-数学
数列{an}中,a1=1,且点(an,an+1)在直线l:2x-y+1=0上.(Ⅰ)设bn=an+1,求证:{bn}是等比数列;(Ⅱ)设Cn=n(3an+2),求{Cn}的前n项和.-数学
数列an=log2n+1n+2(n∈N*),设其前n项和为Sn,则使Sn<-5成立的自然数n()A.有最小值63B.有最大值63C.有最小值31D.有最大值31-数学
对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*).对正整数k,规定{△kan}为{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an=
已知数列{an}是各项均不为0的等差数列,公差为d,Sn为其前n项和,且满足.数列{bn}满足,Tn为数列{bn}的前n项和.(I)求a1,d和Tn;(II)若对任意的n∈N*,不等式恒成立,求实数λ
设f(x)=14x+2,利用课本中推导等差数列前n项和的公式的方法,可求得f(-3)+f(-2)+…+f(0)+…+f(3)+f(4)的值为______.-数学
数列{an}:a1=1,a2=3,a3=2,an+2=an+1-an,求S2002.-数学
已知公比不为1的等比数列{an}的首项为1,若3a1,2a2,a3成等差数列,则数列{1an}的前5项和为()A.12181B.3116C.121D.31-数学
设函数f(x)=a1+a2x+a3x2+…+anxn-1,f(0)=12,数列{an}满f(1)=n2an(n∈N*),则数列{an}的前n项和Sn等于______.-数学
设数列{an}的前n项和Sn,令Tn=S1+S2+…+Snn,称Tn为数列a1,a2…an的“理想数”,已知数a1,a2…a501的“理想数”为2008,那么数列3,a1,a2…a501的“理想数”为
设数列满足a1=2,an+1-an=3•22n-1(1)求数列{an}的通项公式;(2)令bn=nan,求数列的前n项和Sn.-数学
数列{an}中,a1=1,Sn是{an}的前n项和,且Sn+1=Sn+n,n∈N*.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若bn=1Sn+1-1,求数列{bn}的通项公式;(III)若cn=n•2an
定义等积数列{an}:若an•an-1=p(p为非零常数,n≥2),则称{an}为等积数列,p称为公积.若{an}为等积数列,公积为1,首项为a,则a2007=______,S2007=______.
若函数y=f(x)对于任意的x,y∈N*都有f(x+y)=f(x)•f(y)且f(1)=2,则f(2)f(1)+f(3)f(2)+f(4)f(3)+…+f(2007)f(2006)=______.-数
求数列11×3,12×4,13×5,…,1n(n+2),…的前n项和S.-数学
设f(x),g(x)是定义在R上的恒不为零的函数,对任意x,y∈R,都有f(x)f(y)=f(x+y),g(x)+g(y)=g(x+y),若a1=12,an=f(n)(n∈N*),且b1=1,bn=g
数列{an}的前n项和为Sn=npan(n∈N*)且a1≠a2,(1)求常数p的值;(2)证明:数列{an}是等差数列.-数学
已知数列{an}是首项a1=1的等比数列,其前n项和Sn中,S3、S4、S2成等差数列.(1)求数列{an}的通项公式;(2)设bn=2log12|an|+1,求数列{bn}的前n项和为Tn;(3)求
已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),数列{bn}满足b1=1,且点P(bn,bn+1)(n∈N*)在直线y=x+2上.(Ⅰ)求数列{an}、{bn}的通项公式;(Ⅱ)求数
已知函数f(x)=logmx(mm为常数,0<m<1),且数列{f(an)}是首项为2,公差为2的等差数列.(1)若bn=an•f(an),当m=22时,求数列{bn}的前n项和Sn;(2)设cn=a
数列{an}的通项an=n2(cos2nπ3-sin2nπ3),其前n项和为Sn,(1)求Sn;(2)bn=S3nn•4n,求数列{bn}的前n项和Tn.-数学
求证:C0n+3C1n+5C2n+…+(2n+1)Cnn=(n+1)2n.-数学
数列{an}的通项公式为an=1n+n+1,其前n项之和为10,则在平面直角坐标系中,直线(n+1)x+y+n=0在y轴上的截距为______.-数学
在等差数列{an}中,若前11项和S11=11,则a2+a5+a7+a10=()A.5B.6C.4D.8-数学
已知数列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N).(1)写出a2、a3的值(只写结果)并求出数列{an}的通项公式;(2)设bn=1an+1+1an+2+1an+3+…+1a2
返回顶部
题目简介
已知函数f(x)=ax+b,当x∈[a1,b1]时f(x)的值域为[a2,b2],当x∈[a2,b2]时f(x)的值域为[a3,b3],…依此类推,一般地,当x∈[an-1,bn-1]时f(x)的值域
题目详情
(1)若a=1,求数列{an},{bn}的通项公式.
(2)若a>0且a≠1,要使数列{bn}是公比不为1的等比数列,求b的值.
(3)若a<0,设数列{an},{bn}的前n项和分别为Sn,Tn,求(T1+T2+…+T2000)-(S1+S2+…+S2000)的值.
答案
由已知,当n≥2时,x∈[an-1,bn-1],f(x)的值域是[an,bn],
∴an=f(an-1)=an-1+b,bn=f(bn-1)=bn-1+b,
∴{an}、{bn}都是公差为b的等差数列.
∵a1=0,b1=1,
∴an=(n-1)b,bn=(n-1)b+1;
(2)∵a>0,a≠1,
∴f(x)=ax+b在R上也是增函数,
由已知有bn=f(bn-1)=abn-1+b,即bn=abn-1+b(n≥2),
∴
若{bn}是公比不为1的等比数列,则
(3)∵a<0,∴f(x)=ax+b在R上是减函数,
由已知可得,bn=f(an-1)=a•an-1+b,an=f(bn-1)=a•bn-1+b,
∴bn-an=-a(bn-1-an-1)(n≥2),
∴{bn-an}是以1为首项,-a为公比的等比数列,
∴bn-an=(-a)n-1,
∴Tn-Sn=(b1-a1)+(b2-a2)+…+(bn-an)=
于是,(T1+T2+…+T2000)-(S1+S2+…+S2000)
=(T1-S1)+(T2-S2)+…+(T2000-S2000)
=