(教材江苏版第62页习题7)(1)已知数列an的通项公式为an=1n(n+1),则前n项的和______;(2)已知数列an的通项公式为an=1n+n+1,则前n项的和______.-数学

题目简介

(教材江苏版第62页习题7)(1)已知数列an的通项公式为an=1n(n+1),则前n项的和______;(2)已知数列an的通项公式为an=1n+n+1,则前n项的和______.-数学

题目详情

(教材江苏版第62页习题7)(1)已知数列an的通项公式为an=
1
n(n+1)
,则前n项的和 ______;(2)已知数列an的通项公式为an=
1
n
+
n+1
,则前n项的和 ______.
题型:填空题难度:中档来源:不详

答案

(1)∵an=class="stub"1
n(n+1)
=class="stub"1
n
-class="stub"1
n+1

∴Sn=a1+a2+…+an
=1-class="stub"1
2
+class="stub"1
2
-class="stub"1
3
+…+class="stub"1
n
-class="stub"1
n+1
=1-class="stub"1
1+n

=class="stub"n
1+n

an=class="stub"1
n
+
n+1

=
n+1
-
n
(
n+1
+
n
)  (
n+1
n
 )
=
n+1
-
n

Tn=a1+a2+…+an
=
2
-1+
3
-
2
+…+
n+1
-
n
=
n+1
-
1
故答案为:class="stub"n
n+1
n+1
-1

更多内容推荐