设数列{an}的前n项和为Sn,且满足Sn=2-an,(n=1,2,3,…)(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an,求数列{bn}的通项公式;(Ⅲ)c

题目简介

设数列{an}的前n项和为Sn,且满足Sn=2-an,(n=1,2,3,…)(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an,求数列{bn}的通项公式;(Ⅲ)c

题目详情

设数列{an}的前n项和为Sn,且满足Sn=2-an,(n=1,2,3,…)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an,求数列{bn}的通项公式;
(Ⅲ)cn=
n(3-bn)
2
,求cn的前n项和Tn
题型:解答题难度:中档来源:不详

答案

(Ⅰ)由Sn=2-an①
当n=1时,S1=2-a1,∴a1=1.
取n=n+1得:Sn+1=2-an+1②
②-①得:Sn+1-Sn=an-an+1
即an+1=an-an+1,故有2an+1=an(n=1,2,3,…),
∵a1=1≠0,∴an≠0,∴
an+1
an
=class="stub"1
2
(n∈N*).
所以,数列{an}为首项a1=1,公比为class="stub"1
2
的等比数列.
则an=(class="stub"1
2
)n-1
(n∈N*).
(Ⅱ)∵bn+1=bn+an,∴bn+1-bn=(class="stub"1
2
)n-1

b2-b1=(class="stub"1
2
)0=1

b3-b2=(class="stub"1
2
)1=class="stub"1
2

b4-b3=(class="stub"1
2
)2


bn-bn-1=(class="stub"1
2
)n-2

将以上n-1个等式累加得:
bn-b1=1+class="stub"1
2
+(class="stub"1
2
)2+(class="stub"1
2
)3+…+(class="stub"1
2
)n-2

=
1×[1-(class="stub"1
2
)n-1]
1-class="stub"1
2

=2-class="stub"1
2n-2

bn=b1+2-class="stub"1
2n-2
=1+2-class="stub"1
2n-2
=3-class="stub"1
2n-2

(Ⅲ)由cn=
n(3-bn)
2
=
n(3-3+class="stub"1
2n-2
)
2
=class="stub"n
2n-1

Tn=c1+c2+c3+…+cn.
得:Tn=class="stub"1
20
+class="stub"2
21
+class="stub"3
22
+…+class="stub"n-1
2n-2
+class="stub"n
2n-1

class="stub"1
2
Tn=class="stub"1
21
+class="stub"2
22
+class="stub"3
23
+…+class="stub"n-1
2n-1
+class="stub"n
2n

③-④得:class="stub"1
2
Tn=1+class="stub"1
2
+class="stub"1
22
+class="stub"1
23
+…class="stub"1
2n-1
-class="stub"n
2n

=
1×(1-class="stub"1
2n
)
1-class="stub"1
2
-class="stub"n
2n

=2-class="stub"1
2n-1
-class="stub"n
2n

Tn=4-class="stub"2+n
2n-1

更多内容推荐