设函数f(x)=x2+lnx,若曲线y=f(x)在点(1,f(1))处的切线方程为y=ax+b,则a+b=______.-数学

题目简介

设函数f(x)=x2+lnx,若曲线y=f(x)在点(1,f(1))处的切线方程为y=ax+b,则a+b=______.-数学

题目详情

设函数f(x)=x2+lnx,若曲线y=f(x)在点(1,f(1))处的切线方程为y=ax+b,则a+b=______.
题型:填空题难度:中档来源:不详

答案

∵f(x)=x2+lnx
∴f(1)=12+ln1=1即切点为(1,1)
而f′(x)=2x+class="stub"1
x
则f′(1)=2+1=3即切线的斜率为3
∴曲线y=f(x)在点(1,f(1))处的切线方程为y-1=3(x-1)即y=3x-2
即a=3,b=-2
∴a+b=3-2=1
故答案为:1

更多内容推荐