设n∈N*,(2x+1)n的展开式各项系数之和为an,(3x+1)n展开式的二项式系数之和为bn,则limn→+∞2an+3bnan+1bn+1=______.-数学

题目简介

设n∈N*,(2x+1)n的展开式各项系数之和为an,(3x+1)n展开式的二项式系数之和为bn,则limn→+∞2an+3bnan+1bn+1=______.-数学

题目详情

设n∈N*,(2x+1)n的展开式各项系数之和为an,(3x+1)n展开式的二项式系数之和为bn,则
lim
n→+∞
2an+3bn
an+1bn+1
=______.
题型:填空题难度:中档来源:不详

答案

令x=1由二项式定理可得an=3n,(3x+1)n展开式的二项式系数之和bn=2n
lim
n→∞
2an+3bn
an+1bn+1
=
lim
n→∞
2?3n+3?2n
3n+1+2n+1
=
lim
n→∞
2+3?(class="stub"2
3
)
n
3+2?(class="stub"2
3
)
n
=
2+3
lim
n→∞
(class="stub"2
3
)
n
3+2
lim
n→∞
(class="stub"2
3
)
n
=class="stub"2
3

故答案为class="stub"2
3

更多内容推荐