已知等差数列前三项为a,4,3a,前n项的和为Sn,Sk=2550.(Ⅰ)求a及k的值;(Ⅱ)求limn→∞(1S1+1S2+…+1Sn).-数学

题目简介

已知等差数列前三项为a,4,3a,前n项的和为Sn,Sk=2550.(Ⅰ)求a及k的值;(Ⅱ)求limn→∞(1S1+1S2+…+1Sn).-数学

题目详情

已知等差数列前三项为a,4,3a,前n项的和为Sn,Sk=2550.
(Ⅰ)求a及k的值;
(Ⅱ)求
lim
n→∞
(
1
S1
+
1
S2
+…+
1
Sn
)
题型:解答题难度:中档来源:江西

答案

(Ⅰ)设该等差数列为{an},
则a1=a,a2=4,a3=3a,Sk=2550.
由已知有a+3a=2×4,
解得首项a1=a=2,
公差d=a2-a1=2.
代入公式Sk=k•a1+
k(k-1)
2
•d

k•2+
k(k-1)
2
•2=2550

∴k2+k-2550=0
解得k=50,k=-51(舍去)
∴a=2,k=50;

(Ⅱ)由Sn=n•a1+
n(n-1)
2
•d

得Sn=n(n+1),
class="stub"1
S1
+class="stub"1
S2
++class="stub"1
Sn

=class="stub"1
1×2
+class="stub"1
2×3
++class="stub"1
n(n+1)

=(class="stub"1
1
-class="stub"1
2
)+(class="stub"1
2
-class="stub"1
3
)++(class="stub"1
n
-class="stub"1
n+1
)

=1-class="stub"1
n+1

lim
n→∞
(class="stub"1
S1
+class="stub"1
S2
++class="stub"1
Sn
)=
lim
n→∞
(1-class="stub"1
n+1
)
=1.

更多内容推荐