已知函数f(x)=13x3+ax2-bx+1(x∈R,a,b为实数)有极值,且在x=1处的切线与直线x-y+1=0平行.(Ⅰ)求实数a的取值范围;(Ⅱ)是否存在实数a,使得函数f(x)的极小值为1,若

题目简介

已知函数f(x)=13x3+ax2-bx+1(x∈R,a,b为实数)有极值,且在x=1处的切线与直线x-y+1=0平行.(Ⅰ)求实数a的取值范围;(Ⅱ)是否存在实数a,使得函数f(x)的极小值为1,若

题目详情

已知函数f(x)=
1
3
x3+ax2-bx+1(x∈R,a,b为实数)有极值,且在x=1处的切线与直线x-y+1=0平行.
(Ⅰ)求实数a的取值范围;
(Ⅱ)是否存在实数a,使得函数f(x)的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;
(Ⅲ)设函数g(x)=
f(x)-2ax+b-1
x
-2lnx,试判断函数g(x)在(1,+∞)上的符号,并证明:lnn+
1
2
(1+
1
n
)≤
n


i-1
1
i
(n∈N*).
题型:解答题难度:中档来源:宜宾一模

答案

(Ⅰ)∵f′(x)=x2+2ax-b,∴f′(1)=1+2a-b,
又因为函数在x=1处的切线与直线x-y+1=0平行,所以在x=1处的切线的斜率等于1,∴f′(1)=1∴b=2a①
∵f(x)有极值,故方程f′(x)=x2+2ax-b=0有两个不等实根∴△=4a2+4b>0∴a2+b>0②
由①.②可得,a2+2a>0∴a<-2或a>0
故实数a的取值范围是a∈(-∞,-2)∪(0,+∞)
((Ⅱ)存在a=-class="stub"8
3
…(5分)
由(1)可知f′(x)=x2+2ax-b,令f′(x)=0∴x1=-a-
a2+2a
,x2=-a+
a2+2a


360优课网

∴f(x)极小=f(x2)=class="stub"1
3
x23+ax22-2ax2+1=1,
∴x2=0或x22+3ax2-6a=0
若x2=0,则-a+
a2+2a
=0,则a=0(舍),
若x22+3ax2-6a=0,又f′(x2)=0,∴x22+2ax2-2a=0,
∴ax2-4a=0
∵a≠0∴x2=4
∴-a+
a2+2a
=4,
∴a=-class="stub"8
3
<2∴存在实数a=-class="stub"8
3
,使得函数f(x)的极小值为1.
(Ⅲ)由g(x)=
f(x)-2ax+b-1
x
-2lnx=
x2+2ax-b-2ax+b-1
x
-2lnx=x-class="stub"1
x
-2lnx
故g′(x)=1+class="stub"1
x2
-class="stub"2
x
=
x2-2x+1
x2
=
(x-1)2
x2
>0,
则g(x)在(1,+∞)上是增函数,故g(x)>g(1)=0,
所以,g(x)在(1,+∞)上恒为正.
当n是正整数时,class="stub"n+1
n
>1,设x=class="stub"n+1
n
,则
g(class="stub"n+1
n
)=class="stub"n+1
n
-class="stub"n
n+1
-2lnclass="stub"n+1
n

=1+class="stub"1
n
-1+class="stub"1
n+1
-2[ln(n+1)-lnn]
=class="stub"1
n
+class="stub"1
n+1
-2[ln(n+1)-lnn]>0,
class="stub"1
n
+class="stub"1
n+1
>2[ln(n+1)-lnn]
上式分别取n的值为1、2、3、…、n-1(n>1)累加得:
class="stub"1
1
+class="stub"1
2
)+(class="stub"1
2
+class="stub"1
3
)+(class="stub"1
3
+class="stub"1
4
)+…+class="stub"1
n-1
+class="stub"1
n

>2[ln2-ln1+ln3-ln2+ln4-ln3+…lnn-ln(n-1)]
∴1+2(class="stub"1
2
+class="stub"1
3
+class="stub"1
4
+…class="stub"1
n-1
+class="stub"1
n
>2lnn
2(1+class="stub"1
2
+class="stub"1
3
+class="stub"1
4
+…class="stub"1
n-1
+class="stub"1
n
)>2lnn+1+class="stub"1
n

∴1+class="stub"1
2
+class="stub"1
3
+class="stub"1
4
+…class="stub"1
n-1
+class="stub"1
n
)>lnn+class="stub"1
2
(1+class="stub"1
n

即lnn+class="stub"1
2
(1+class="stub"1
n
)<
n






i-1
class="stub"1
i
,(n>1)
又当n=1时,lnn+class="stub"1
2
(1+class="stub"1
n
)=
n






i-1
class="stub"1
i

故lnn+class="stub"1
2
(1+class="stub"1
n
)≤
n






i-1
class="stub"1
i
,当且仅当n=1时取等号.

更多内容推荐