优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 已知函数f(x)=(x2+ax+1)ex,g(x)=2x3-3x2+a+2,其中a<0.(Ⅰ)若a=-1,求f(x)的极大值;(Ⅱ)当x∈[-1,1]时,f(x)的最小值不小于g(x)的最大值,求实数
已知函数f(x)=(x2+ax+1)ex,g(x)=2x3-3x2+a+2,其中a<0.(Ⅰ)若a=-1,求f(x)的极大值;(Ⅱ)当x∈[-1,1]时,f(x)的最小值不小于g(x)的最大值,求实数
题目简介
已知函数f(x)=(x2+ax+1)ex,g(x)=2x3-3x2+a+2,其中a<0.(Ⅰ)若a=-1,求f(x)的极大值;(Ⅱ)当x∈[-1,1]时,f(x)的最小值不小于g(x)的最大值,求实数
题目详情
已知函数f(x)=(x
2
+ax+1)e
x
,g(x)=2x
3
-3x
2
+a+2,其中a<0.
(Ⅰ)若a=-1,求f(x)的极大值;
(Ⅱ)当x∈[-1,1]时,f(x)的最小值不小于g(x)的最大值,求实数a的取值范围.
题型:解答题
难度:中档
来源:不详
答案
(Ⅰ)当a=-1时,f'(x)=[x2+(a+2)x+a+1]ex=x(x+1)ex,
令f'(x)=0,得x1=-1,x2=0,
当x∈(-∞,-1)∪(0,+∞)f′(x)>0;x∈(-1,0)时,f′(x)<0.
可得f(x)在(-∞,-1),(0,+∞)上递增,在(-1,0)上递减,
所以
f(x
)
极大值
=f(-1)=
class="stub"3
e
.
(Ⅱ)由g′(x)=6x2-6x=6x(x-1)>0,得x>1或x<0.
可得g(x)在(-1,0)上递增,在(0,1)上递减,
所以gmax(x)=g(0)=a+2.
令f'(x)=0,得x1=-1,x2=-a-1.
①若-a-1≥1,即a≤-2时,f(x)在区间[-1,1]上单调递减,
所以f(x)min=f(1)=(a+2)e,由(a+2)e≥a+2,得a=-2;
②∵a<0,∴-a-1>-1.
若-a-1<1,即a>-2时,f(x)在区间(-1,-a-1)上递减,在区间(-a-1,1)上递增,
所以
f(x
)
min
=f(-a-1)=(a+2)
e
-a-1
,
由(a+2)e-a-1≥(a+2),得a≤-1,所以-2<a≤-1.
综上所述,实数a的取值范围为[-2,-1].
上一篇 :
己知函数f(x)=ax3+bx2+c,其导数f'
下一篇 :
已知函数f(x)=13x3-x2+ax-a(a∈R).(
搜索答案
更多内容推荐
如图为函数f(x)=x(0<x<1)的图象,其在点M(t,f(t))处的切线为l,l与y轴和直线y=1分别交于点P、Q,点N(0,1),若△PQN的面积为b时的点M恰好有两个,则b的取值范围为()A.
曲线y=ex在点A(0,1)处的切线斜率为______.-数学
函数f(x)=sinx在x=π3处的切线方程是()A.y-12=32(x-π3)B.y-32=12(x-π3)C.y-32=32(x-π3)D.y-12=12(x-π3)-数学
函数f(x)的定义域为开区间(a,b),导函数f'(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极大值点()A.1个B.2个C.3个D.4个-数学
设函数f(x)=aex+1aex+b(a>0).(Ⅰ)求f(x)在[0,+∞)内的最小值;(Ⅱ)设曲线y=f(x)在点(2,f(2))处的切线方程为y=32x,求a,b的值.-数学
曲线y=x2在点M(12,14)的切线的倾斜角的大小是()A.30°B.45°C.60°D.90°-数学
曲线y=2x-x3在横坐标为-1的点处的切线为l,则点P(3,2)到直线l的距离为()A.722B.922C.1122D.91010-数学
点(1,1)到曲线f(x)=lnx在点x=1处的切线的距离为()A.2B.1C.22D.2-数学
设函数f(x)=x3-x2+bx+c,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为y=1.(1)确定b,c的值;(2)设曲线y=f(x)在点(x1,f(x1))及(x2,f(
已知函数f(x)=[ax2-(a+1)x+1]ex,a∈R.(Ⅰ)若a=1,求函数y=f(x)在x=2处的切线方程;(Ⅱ)若a∈[0,1],设h(x)=f(x)-f'(x)(其中f'
计算limx→π2sim2xcos(π-x)的结果等于()A.2B.-2C.1D.-1-数学
已知函数f(x)=13x3-bx2+2x+a,x=2是f(x)的一个极值点.(1)求函数f(x)的单调区间;(2)若当x∈[1,+∞)时,f(x)-23>a2恒成立,求a的取值范围.-数学
已知曲线y=x24的一条切线的斜率为12,则切点的横坐标为______.-数学
设a∈R,若函数y=eax+3x,x∈R有大于零的极值点,则()A.a>-3B.a<-3C.a>-13D.a<-13-数学
已知函数,(1)当时,求函数的极值点;(2)当时,若方程恰有三个不同的根,试求的取值范围.-高二数学
若函数y=f(x)在区间(a,b)内可导,且x0∈(a,b)则limh→0f(x0+h)-f(x0-h)h的值为()A.f′(x0)B.2f′(x0)C.-2f′(x0)D.0-数学
设x1、x2(x1≠x2)是函数f(x)=ax3+bx2-a2x(a>0)的两个极值点,(Ⅰ)若x1=-1,x2=2,求函数f(x)的解析式;(Ⅱ)若|x1|+|x2|=2,求b的最大值;(Ⅲ)设函数
函数y=sinx的图象上一点(π3,32)处的切线的斜率为()A.1B.32C.22D.12-数学
已知函数f(x)=ax3+bx2-9x在x=3处取得极大值0.(Ⅰ)求f(x)在区间[0,1]上的最大值;(Ⅱ)若过点P(-1,m)可作曲线y=f(x)的切线有三条,求实数m的取值范围.-数学
已知函数,若处取得极小值.(1)求实数的值;(2)求函数的单调减区间.-高二数学
已知函数f(x)=ax3+bx2-3x(a,b∈R),且f(x)在x=1和x=3处取得极值。(1)求函数f(x)的解析式;(2)设函数g(x)=f(x)+t,是否存在实数t,使得曲线y=g(x)与x轴
设函数f(x)的若f(x)=ex,则lim△x→0f(1-2△x)-f(1)△x=______.-数学
若曲线y=32x2+x-12的某一切线与直线y=4x+3平行,则切点坐标为______,切线方程为______.-数学
设函数f(x)=1-ex的图象与x轴相交于点P,则曲线在点P的切线方程为()A.y=-x+1B.y=x+1C.y=-xD.y=x-数学
函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点的个数为______个.-数学
已知函数,求的极大值与极小值.-高二数学
函数f(x)=x的图象在x=4处的切线方程是()A.x-2y=0B.x-y-2=0C.x-4y+4=0D.x+4y-4=0-数学
已知函数f(x)=x3-3x.(1)求曲线y=f(x)在点x=2处的切线方程;(2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.-数学
过原点作曲线y=ex的切线,则切线的斜率为______.-数学
已知点P是曲线C:f(x)=ex+x上的动点,直线l是曲线C在P点处的切线,则直线l倾斜角的取值范围是______.-数学
函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点[]A.个B.个C.个D.个-高二数学
设三次函数f(x)的导函数为f′(x),函数y=x·f′(x)的图象的一部分如图所示,则正确的是[]A.f(x)的极大值为,极小值为B.f(x)的极大值为,极小值为C.f(x)的极大值为f(-3),极
函数y=f'(x)是函数y=f(x)的导函数,且函数y=f(x)在点p(x0,f(x0)处的切线为:l:y=g(x)=f'(x0)(x﹣x0)+f(x0),F(x)=f(x)﹣g(
(文)如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=______.-数学
奇函数f(x)=ax3+bx2+cx在x=1处有极值,则3a+b+c的值为______.-数学
limn→∞(1+2n)n=______.-数学
已知函数f(x)=cosxex,则函数f(x)在点(0,f(0))处切线方程为______.-数学
设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=lgxn,则a1+a2+…+a99的值为______.-数学
曲线y=ex在点A(0,1)处的切线斜率为______.-数学
计算limn→∞2n2+11+2+…+n=______.-数学
直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则b的值为______.-数学
已知函数,求的极大值与极小值.-高二数学
曲线y=xlnx的切线与直线x-y+1=0平行,则切线方程为()A.x-y-3=0B.x-y-2=0C.x-y-1=0D.x-y=0-数学
设函数f(x)=-x3+2x2-x(x∈R).(Ⅰ)求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)求函数在f(x)区间[0,2]上的最大值与最小值.-数学
若limn→∞an2+n+1n2+2=1,则实数a的值为______.-数学
已知f(x)=1x,则lim△x→0f(x+△x)-f(x)△x的值是______.-数学
(文)limn→+∞2n+14n+9=______.-数学
函数的图象如图所示,且在与处取得极值,则的值一定[]A.等于0B.大于0C.小于0D.小于或等于0-高二数学
已知函数f(x)=ax2+2lnx(a∈R),设曲线y=f(x)在点(1,f(1))处的切线为l,(1)求直线l的方程;(2)若直线l与圆C:x2+y2=1相切,求a的值.-数学
函数的定义域为开区间,导函数在内的图象如右图所示,则函数在开区间内有极小值点[]A.1个B.2个C.3个D.4个-高二数学
返回顶部
题目简介
已知函数f(x)=(x2+ax+1)ex,g(x)=2x3-3x2+a+2,其中a<0.(Ⅰ)若a=-1,求f(x)的极大值;(Ⅱ)当x∈[-1,1]时,f(x)的最小值不小于g(x)的最大值,求实数
题目详情
(Ⅰ)若a=-1,求f(x)的极大值;
(Ⅱ)当x∈[-1,1]时,f(x)的最小值不小于g(x)的最大值,求实数a的取值范围.
答案
令f'(x)=0,得x1=-1,x2=0,
当x∈(-∞,-1)∪(0,+∞)f′(x)>0;x∈(-1,0)时,f′(x)<0.
可得f(x)在(-∞,-1),(0,+∞)上递增,在(-1,0)上递减,
所以f(x)极大值=f(-1)=
(Ⅱ)由g′(x)=6x2-6x=6x(x-1)>0,得x>1或x<0.
可得g(x)在(-1,0)上递增,在(0,1)上递减,
所以gmax(x)=g(0)=a+2.
令f'(x)=0,得x1=-1,x2=-a-1.
①若-a-1≥1,即a≤-2时,f(x)在区间[-1,1]上单调递减,
所以f(x)min=f(1)=(a+2)e,由(a+2)e≥a+2,得a=-2;
②∵a<0,∴-a-1>-1.
若-a-1<1,即a>-2时,f(x)在区间(-1,-a-1)上递减,在区间(-a-1,1)上递增,
所以f(x)min=f(-a-1)=(a+2) e-a-1,
由(a+2)e-a-1≥(a+2),得a≤-1,所以-2<a≤-1.
综上所述,实数a的取值范围为[-2,-1].