设函数f(x)=x3-x2+bx+c,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为y=1.(1)确定b,c的值;(2)设曲线y=f(x)在点(x1,f(x1))及(x2,f(

题目简介

设函数f(x)=x3-x2+bx+c,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为y=1.(1)确定b,c的值;(2)设曲线y=f(x)在点(x1,f(x1))及(x2,f(

题目详情

设函数f(x)=x3x2+bx+c,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为y=1.
(1)确定b,c的值;
(2)设曲线y=f(x)在点(x1,f(x1))及(x2,f(x2))处的切线都过点(0,2).
证明:当x1≠x2时,f ′(x1)≠f ′(x2);
(3)若过点(0,2)可作曲线y=f(x)的三条不同切线,求a的取值范围.
题型:解答题难度:偏难来源:湖北省期中题

答案

解:(1)由f(x)=x3-x2+bx+c,得f(0)=c,f ′(x)=x2-ax+b,f ′(0)=b,
又由曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,得f(0)=1,f ′(0)=0,故b=0,c=1.
(2)f(x)=x3-x2+1,f ′(x)=x2-ax,由于点(t,f(t))处的切线方程为y-f(t)=f ′(t)(x-t),
而点(0,2)在切线上,所以2-f(t)=f ′(t)(-t),化简得t3-t2+1=0,
即t满足的方程为t3-t2+1=0,
下面用反证法证明:假设f ′(x1)=f ′(x2),
由于曲线y=f(x)在点(x1,f(x1))及(x2,f(x2))处的切线都过点(0,2),则下列等式成立:

由③得x1+x2=a,由①-②得x12+x1x2+x22=a2④
又x12+x1●x2+x22=(x1+x2)2-x1x2=a2-x1(a-x2)=x12-ax1+a2=(x1-)2+a2≥a2
故由④得,x1=,此时x2=与x1≠x2矛盾,所以f ′(x1)≠f ′(x2).
(3)由(2)知,过点(0,2)可作y=f(x)的三条切线,等价于方程2-f(t)=f ′(t)(0-t)有三个相异的实根,即等价于方程t3-t2+1=0有三个相异的实根.
设g(t)=t3-t2+1,则g′(t)=2t2-at=2t(t-)
由于a>0,故有

由g(t)的单调性可知:要使g(t)=0有三个相异的实根,当且仅当1-<0,即a>
∴a的取值范围是(,+∞)

更多内容推荐