已知函数f(x)=ax3+bx2+cx(a≠0)定义在R上的奇函数,且x=-1时,函数取极值1.(1)求a,b,c的值;(2)若对任意的x1,x2∈[-1,1],均有|f(x1)-f(x2)|≤s成立

题目简介

已知函数f(x)=ax3+bx2+cx(a≠0)定义在R上的奇函数,且x=-1时,函数取极值1.(1)求a,b,c的值;(2)若对任意的x1,x2∈[-1,1],均有|f(x1)-f(x2)|≤s成立

题目详情

已知函数f(x)=ax3+bx2+cx(a≠0)定义在R上的奇函数,且x=-1时,函数取极值1.
(1)求a,b,c的值;
(2)若对任意的x1,x2∈[-1,1],均有|f(x1)-f(x2)|≤s成立,求s的最小值.
题型:解答题难度:中档来源:不详

答案

(1)∵f(x)=ax3+bx2+cx(a≠0)是定义R上的奇函数
∴b=0
∴f(x)=ax3+cx,∴f′(x)=3ax2+c
依题意有f′(-1)=0且f(-1)=1
3a+c=0
-a-c=1
,解得,a=class="stub"1
2
,c=-class="stub"3
2

∴f(x)=class="stub"1
2
x3+-class="stub"3
2
x
(2)f(x)=class="stub"1
2
x3-class="stub"3
2
x,f′(x)=class="stub"3
2
x2-class="stub"3
2
=class="stub"3
2
(x-1)(x+1)

x∈(-1,1)时f′(x)<0,
∴f(x)在x∈[-1,1]上是减函数,
即f(1)≤f(x)≤f(-1),
则|f(x)|≤1,⇒fmax(x)=1,fmin(x)=-1,
当x1,x2∈[-1,1]时,|f(x1)-f(x2)|≤|f(x)max|+|f(x)min|≤1+1=2
∴|f(x1)-f(x2)|≤s中s的最小值为2,
∴s的最小值2.

更多内容推荐