已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,求:(Ⅰ)x0的值;(Ⅱ)a,b,c的值.-高三数学

题目简介

已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,求:(Ⅰ)x0的值;(Ⅱ)a,b,c的值.-高三数学

题目详情

已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点
(1,0),(2,0),如图所示,求:
(Ⅰ)x0的值;
(Ⅱ)a,b,c的值.
题型:解答题难度:中档来源:吉林省月考题

答案

解:(Ⅰ)由图象可知,在(﹣∞,1)上f'(x)>0,在(1,2)上f'(x)<0.
在(2,+∞)上f'(x)>0.
故f(x)在(﹣∞,1),(2,+∞)上递增,在(1,2)上递减.
因此f(x)在x=1处取得极大值,所以x0=1.
(Ⅱ)f'(x)=3ax2+2bx+c,
由f'(1)=0,f'(2)=0,f(1)=5,

解得a=2,b=﹣9,c=12.

更多内容推荐