设,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴。(1)求a的值;(2)求函数f(x)的极值。-高三数学

题目简介

设,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴。(1)求a的值;(2)求函数f(x)的极值。-高三数学

题目详情

,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴。
(1)求a的值;
(2)求函数f(x)的极值。
题型:解答题难度:中档来源:高考真题

答案

解:(1) 求导函数可得
∵曲线y=f(x)在点(1,f(1))处的切线垂直于y轴
∴f′(1)=0,

∴a=-1;
(2)由(1)知,(x>0)=
令f′(x)=0,可得x=1或x=(舍去)
∵0<x<1时,f′(x)<0,函数递减;
x>1时,f′(x)>0,函数递增
∴x=1时,函数f(x)取得极小值为3。

更多内容推荐