优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3.(1)求实数a的值;(2)若k∈Z,且k<f(x)x-1对任意x>1恒成立,求k的最大值;(3)当n>m≥4时,
已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3.(1)求实数a的值;(2)若k∈Z,且k<f(x)x-1对任意x>1恒成立,求k的最大值;(3)当n>m≥4时,
题目简介
已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3.(1)求实数a的值;(2)若k∈Z,且k<f(x)x-1对任意x>1恒成立,求k的最大值;(3)当n>m≥4时,
题目详情
已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3.
(1)求实数a的值;
(2)若k∈Z,且
k<
f(x)
x-1
对任意x>1恒成立,求k的最大值;
(3)当n>m≥4时,证明(mn
n
)
m
>(nm
m
)
n
.
题型:解答题
难度:中档
来源:广州二模
答案
(1)因为f(x)=ax+xlnx,所以f'(x)=a+lnx+1.(1分)
因为函数f(x)=ax+xlnx的图象在点x=e处的切线斜率为3,
所以f'(e)=3,即a+lne+1=3.
所以a=1.(2分)
(2)由(1)知,f(x)=x+xlnx,
所以
k<
f(x)
x-1
对任意x>1恒成立,即
k<
class="stub"x+xlnx
x-1
对任意x>1恒成立.(3分)
令
g(x)=
class="stub"x+xlnx
x-1
,
则
g′(x)=
class="stub"x-lnx-2
(x-1)
2
,(4分)
令h(x)=x-lnx-2(x>1),
则
h′(x)=1-
class="stub"1
x
=
class="stub"x-1
x
>0
,
所以函数h(x)在(1,+∞)上单调递增.(5分)
因为h(3)=1-ln3<0,h(4)=2-2ln2>0,
所以方程h(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4).
当1<x<x0时,h(x)<0,即g'(x)<0,当x>x0时,h(x)>0,即g'(x)>0,(6分)
所以函数
g(x)=
class="stub"x+xlnx
x-1
在(1,x0)上单调递减,在(x0,+∞)上单调递增.
所以
[g(x)
]
min
=g(
x
0
)=
x
0
(1+ln
x
0
)
x
0
-1
=
x
0
(1+
x
0
-2)
x
0
-1
=
x
0
∈(3,4)
.(7分)
所以k<[g(x)]min=x0∈(3,4).
故整数k的最大值是3.(8分)
(3)证明:由(2)知,
g(x)=
class="stub"x+xlnx
x-1
是[4,+∞)上的增函数,(9分)
所以当n>m≥4时,
class="stub"n+nlnn
n-1
>
class="stub"m+mlnm
m-1
.(10分)
即n(m-1)(1+lnn)>m(n-1)(1+lnm).
整理,得mnlnn+mlnm>mnlnm+nlnn+(n-m).(11分)
因为n>m,所以mnlnn+mlnm>mnlnm+nlnn.(12分)
即lnnmn+lnmm>lnmmn+lnnn.
即ln(nmnmm)>ln(mmnnn).(13分)
所以(mnn)m>(nmm)n.(14分)
证明2:构造函数f(x)=mxlnx+mlnm-mxlnm-xlnx,(9分)
则f'(x)=(m-1)lnx+m-1-mlnm.(10分)
因为x>m≥4,所以f'(x)>(m-1)lnm+m-1-mlnm=m-1-lnm>0.
所以函数f(x)在[m,+∞)上单调递增.(11分)
因为n>m,所以f(n)>f(m).
所以mnlnn+mlnm-mnlnm-nlnn>m2lnm+mlnm-m2lnm-mlnm=0.(12分)
即mnlnn+mlnm>mnlnm+nlnn.
即lnnmn+lnmm>lnmmn+lnnn.
即ln(nmnmm)>ln(mmnnn).(13分)
所以(mnn)m>(nmm)n.(14分)
上一篇 :
已知函数f(x)=x5+5x4+5x3+1(1)求f(x
下一篇 :
f(x)=x(x-c)2在x=2处有极大值,则常
搜索答案
更多内容推荐
已知函数f(x)=f′(0)cosx+sinx,则函数f(x)在x0=π2处的切线方程是______.-数学
若数列{an}的通项公式是an=3-n+2-n+(-1)n(3-n-2-n)2,n=1,2,…,则limn→∞(a1+a2+…+an)等于()A.1124B.1724C.1924D.2524-数学
若(1+5x)n的展开式中各项系数之和为an,(7x2+1)n的展开式中各项的二项式系数之和为bn,则limn→∞an-2bn3an+4bn的值是()A.13B.14C.1D.-12-数学
数列{14n2-1}的前n项和为Sn,则limn→∞Sn=______.-数学
已知曲线y=x34的一条切线的斜率为14,则切点的横坐标为______.-数学
函数f(x)=13x3-ax2+(a2-1)x+b(a,b∈R)(1)若x=1为f(x)的极值点,求a的值.(2)若y=f(x)的图象在(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[
设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a的值是______.-数学
已知曲线f(x)=x3-3ax(a∈R),直线y=-x+m,m∈R(Ⅰ)当a=43时,且曲线f(x)与直线有三个交点,求m的取值范围(Ⅱ)若对任意的实数m,直线与曲线都不相切,(ⅰ)试求a的取值范围;
设n∈N*,(2x+1)n的展开式各项系数之和为an,(3x+1)n展开式的二项式系数之和为bn,则limn→+∞2an+3bnan+1bn+1=______.-数学
若limn→∞an2+bnn+1=2,则a+b=______.-数学
曲线y=x2+x-2在点(1,0)处的切线方程为______.-数学
直线l与函数y=xa(a<0)的图象切于点(1,1),则直线l与坐标轴所围成三角形的面积S的取值范围为()A.(0,4]B.(0,2]C.[4,+∞)D.[2,+∞)-数学
已知f(x)=ax-1x,g(x)=lnx,(x>0,a∈R是常数).(1)求曲线y=g(x)在点P(1,g(1))处的切线l.(2)是否存在常数a,使l也是曲线y=f(x)的一条切线.若存在,求a的
设f(x)=x+ax,g(x)=x3-x2-3(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;(2)若x∈[0,2],求函数g(x)的最大值和最小值;(3)如果在[12,2]上任取s,t,都
曲线y=x3在点(0,0)处的切线方程是______.-数学
计算limn→∞1+2+3+…+nn2.-数学
若函数f(x)=x3-3bx+3b在(0,1)内有极小值,则()A.0<b<1B.b<1C.b>0D.b<12-数学
曲线y=xlnx在点(e,e)处的切线方程为()A.y=2x-eB.y=-2e-eC.y=2x+eD.y=-x-1-数学
已知等差数列前三项为a,4,3a,前n项的和为Sn,Sk=2550.(Ⅰ)求a及k的值;(Ⅱ)求limn→∞(1S1+1S2+…+1Sn).-数学
函数y=1+3x-x3有()A.极小值-1,极大值1B.极小值-2,极大值3C.极小值-2,极大值2D.极小值-1,极大值3-数学
已知函数f(x)=ln(1+2x)-2x+ax2,(1)若a=1,求f(x)的单调区间;(2)若函数f(x)存在两个极值点,且都小于1,求a的取值范围;(3)若对f(x)定义域内的任意x,不等式f(x
函数y=ex+x在点(0,1)处的切线方程是()A.y=2x+1B.y=x+2C.y=x+1D.y=2x-1-数学
已知曲线y=x2+2x在点M处的瞬时变化率为6,则点M的坐标是()A.(2,8)B.(6,48)C.(4,24)D.不确定-数学
函数f(x)=x3在x=0处的切线方程为______.-数学
曲线y=lnx上一点P和坐标原点O的连线恰好是该曲线的切线,则点P的横坐标为()A.e2B.eC.eD.2-数学
已知函数f(x)=ex-x2+ax-1.(1)过原点的直线与曲线y=f(x)相切于点M,求切点M的横坐标;(2)若x≥0时,不等式f(x)≥0恒成立,试确定实数a的取值范围.-数学
直线l与函数f(x)=x3图象相切,且l与直线x+3y=1垂直,则直线l的方程为______.-数学
曲线y=118(a+12a)x3-2ax在点x=1处的切线为m,在点x=0处的切线为n,则直线m与n的夹角的取值范围是()A.(0,π6]B.(0,π3]C.[π3,π2)D.[π3,π2]-数学
已知函数f(x)=x2-2ax+b在x=1处有极值2.(1)求函数f(x)=x2-2ax+b在闭区间[0,3]上的最值;(2)求曲线)y=x2-2ax+b,y=x+3所围成的图形的面积S.-数学
计算:limn→∞2n2+n+3(2n+1)2=______.-数学
已知曲线y=18x2的一条切线的斜率为12,则切点的纵坐标为()A.12B.14C.4D.2-数学
已知函数f(x)=x3+ax与g(x)=2x2+b的图象在x=1处有相同的切线.(Ⅰ)求a,b的值;(Ⅱ)若不等式f(x)≥mg(x)在[12,2]上恒成立,求实数m的取值范围.-数学
函数y=xex+1在点(0,1)处的切线方程为______.-数学
计算:limn→∞(nn+2)n=______.-数学
已知函数f(x)=x3-x2在x=1处切线的斜率为b,若g(x)=blnx-ax,且g(x)<x2在(1,+∞)上恒成立,则实数a的取值范围是______.-数学
奇函数f(x)=ax3+bx2+cx在x=1处有极值,则3a+b+c的值为______.-数学
已知x=1为奇函数f(x)=13ax3+bx2+(a2-6)x的极大值点,(1)求f(x)的解析式;(2)若P(m,n)在曲线y=f(x)上,证明:过点P作该曲线的切线至多存在两条.-数学
若函数f(x)=x2+bx+c在点P(x0,f(x0))处切线的倾斜角范围是[0,π4],则点P到函数y=f(x)图象对称轴距离的取值范围是______.-数学
limn→∞n+21+2+…+n=______.-数学
计算:limn→∞(1n2+2n2+…+nn2)=______.-数学
函数y=sinx在点(π3,32)处的切线的斜率为()A.1B.12C.22D.32-数学
limn→+∞(n2+n-n)=______.-数学
已知函数f(x)=x3+2x2+x-4,g(x)=ax2+x-8(a>2).(Ⅰ)求函数f(x)极值;(Ⅱ)若对任意的x∈[0,+∞)都有f(x)≥g(x),求实数a的取值范围.-数学
已知函数f(x)=ln(1+x)-14x2;(1)求函数在点(0,f(0))处的切线方程;(2)求函数在[0,2]上的最大值和最小值.-数学
曲线y=x3在P(1,1)处的切线方程为______.-数学
已知a∈R,函数f(x)=ax+lnx-1,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).(1)求函数f(x)在区间(0,e]上的最小值;(2)是否存在实数x0∈(0,e],使曲线y=g
设函数f(x)定义域为(a,b),其导函数f'(x)在(a,b)内的图象如图所示,则f(x)在(a,b)内有极小值的点有______个.-数学
设定函数f(x)=a3x3+bx2+cx+d(a>0),且方程f′(x)-9x=0的两个根分别为1,4.(Ⅰ)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;(Ⅱ)若f(x)在(-∞,+∞)无
函数f(x)=x3-3x(|x|<1)()A.有最大值,但无最小值B.有最大值、最小值C.无最大值、最小值D.无最大值,有最小值-数学
函数f(x)=exsinx的图象在点(0,f(0))处的切线的倾斜角为()A.0B.π4C.1D.32-数学
返回顶部
题目简介
已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3.(1)求实数a的值;(2)若k∈Z,且k<f(x)x-1对任意x>1恒成立,求k的最大值;(3)当n>m≥4时,
题目详情
(1)求实数a的值;
(2)若k∈Z,且k<
(3)当n>m≥4时,证明(mnn)m>(nmm)n.
答案
因为函数f(x)=ax+xlnx的图象在点x=e处的切线斜率为3,
所以f'(e)=3,即a+lne+1=3.
所以a=1.(2分)
(2)由(1)知,f(x)=x+xlnx,
所以k<
令g(x)=
则g′(x)=
令h(x)=x-lnx-2(x>1),
则h′(x)=1-
所以函数h(x)在(1,+∞)上单调递增.(5分)
因为h(3)=1-ln3<0,h(4)=2-2ln2>0,
所以方程h(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4).
当1<x<x0时,h(x)<0,即g'(x)<0,当x>x0时,h(x)>0,即g'(x)>0,(6分)
所以函数g(x)=
所以[g(x)]min=g(x0)=
所以k<[g(x)]min=x0∈(3,4).
故整数k的最大值是3.(8分)
(3)证明:由(2)知,g(x)=
所以当n>m≥4时,
即n(m-1)(1+lnn)>m(n-1)(1+lnm).
整理,得mnlnn+mlnm>mnlnm+nlnn+(n-m).(11分)
因为n>m,所以mnlnn+mlnm>mnlnm+nlnn.(12分)
即lnnmn+lnmm>lnmmn+lnnn.
即ln(nmnmm)>ln(mmnnn).(13分)
所以(mnn)m>(nmm)n.(14分)
证明2:构造函数f(x)=mxlnx+mlnm-mxlnm-xlnx,(9分)
则f'(x)=(m-1)lnx+m-1-mlnm.(10分)
因为x>m≥4,所以f'(x)>(m-1)lnm+m-1-mlnm=m-1-lnm>0.
所以函数f(x)在[m,+∞)上单调递增.(11分)
因为n>m,所以f(n)>f(m).
所以mnlnn+mlnm-mnlnm-nlnn>m2lnm+mlnm-m2lnm-mlnm=0.(12分)
即mnlnn+mlnm>mnlnm+nlnn.
即lnnmn+lnmm>lnmmn+lnnn.
即ln(nmnmm)>ln(mmnnn).(13分)
所以(mnn)m>(nmm)n.(14分)