(理科做)设f(x)为可导函数,且满足limx→0f(1)-f(1-2x)2x=-1,则过曲线y=f(x)上点(1,f(1))处的切线率为()A.2B.-1C.1D.-2-数学

题目简介

(理科做)设f(x)为可导函数,且满足limx→0f(1)-f(1-2x)2x=-1,则过曲线y=f(x)上点(1,f(1))处的切线率为()A.2B.-1C.1D.-2-数学

题目详情

(理科做)设f(x)为可导函数,且满足
lim
x→0
f(1)-f(1-2x)
2x
=-1
,则过曲线y=f(x)上点(1,f(1))处的切线率为
(  )
A.2B.-1C.1D.-2
题型:单选题难度:偏易来源:不详

答案

lim
x→0
f(1)-f(1-2x)
2x
=
lim
x→0
f(1)-f(1-2x)
1-(1-2x)
=-1
,即y'|x=1=-1,
∴y═f(x)在点(1,f(1))处的切线斜率为-1,
故选B.

更多内容推荐