已知函数f(x)=sin(ωx+φ)(ω>0,x∈R),对定义域内的任意x,都满足条件f(x+6)=f(x).若A=sin(ωx+φ+9ω),B=sin(ωx+φ-9ω),则有()A.A>BB.A=B

题目简介

已知函数f(x)=sin(ωx+φ)(ω>0,x∈R),对定义域内的任意x,都满足条件f(x+6)=f(x).若A=sin(ωx+φ+9ω),B=sin(ωx+φ-9ω),则有()A.A>BB.A=B

题目详情

已知函数f(x)=sin(ωx+φ)(ω>0,x∈R),对定义域内的任意x,都满足条件f(x+6)=f(x).若A=sin(ωx+φ+9ω),B=sin(ωx+φ-9ω),则有(  )
A.A>BB.A=BC.A≥BD.A<B
题型:单选题难度:偏易来源:湖北模拟

答案

∵f(x+6)=f(x),
∴函数的周期为:6,又ω>0,
∴ω=class="stub"2π
T
=class="stub"2π
6
=class="stub"π
3

∴A=sin(class="stub"π
3
x+φ+3π)=sin(2π+class="stub"π
3
x+φ+π)=sin[π+(class="stub"π
3
x+φ)]=-sin(class="stub"π
3
x+φ),
B=sin(class="stub"π
3
x+φ-3π)=sin(-2π+class="stub"π
3
x+φ-π)=sin(class="stub"π
3
x+φ-π)=-sin[π-(class="stub"π
3
x+φ)]=-sin(class="stub"π
3
+φ),
则A=B.
故选B

更多内容推荐