已知数列{an}满足:2a1+2a2+…+2an-1+2an=2n+1-2,n∈N*.(1)求数列{an}的通项公式;(2)设bn=2anan+1,数列{bn}的前n项和为Tn.若存在实数λ,使得λ≥

题目简介

已知数列{an}满足:2a1+2a2+…+2an-1+2an=2n+1-2,n∈N*.(1)求数列{an}的通项公式;(2)设bn=2anan+1,数列{bn}的前n项和为Tn.若存在实数λ,使得λ≥

题目详情

已知数列{an}满足:2a1+2a2+…+2an-1+2an=2n+1-2,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=
2
anan+1
,数列{bn}的前n项和为Tn.若存在实数λ,使得λ≥Tn,试求出实数λ的最小值.
题型:解答题难度:中档来源:枣庄二模

答案

(1)当n≥2时,∵2a1+2a2+…+2an-1+2an=2n+1-2
2a1+2a2+…+2an-1=2n-2,
2an=(2n+1-2)-(2n-2),即2an=2n
当n=1时,2a1=22-2,解得a1=1,也符合上式.
∴数列{an}的通项公式为an=n;
(2)由(1)可知:bn=class="stub"2
anan+1
=class="stub"2
n(n+1)
=2(class="stub"1
n
-class="stub"1
n+1
)

∴Tn=2[(1-class="stub"1
2
)+(class="stub"1
2
-class="stub"1
3
)+…+(class="stub"1
n
-class="stub"1
n+1
)]
=2(1-class="stub"1
n+1
)

Tn+1-Tn=2(1-class="stub"1
n+2
)-2(1-class="stub"1
n+1
)
=class="stub"2
(n+1)(n+2)
>0

∴Tn+1>Tn.数列{Tn}是单调递增数列,
∴{T1}的最小值为T1=1.
由题意,λ≥数列{Tn}的最小值=1,
∴实数λ的最小值为1.

更多内容推荐