已知函数f(x)=|x|•(x+a)(a∈R)是奇函数.(Ⅰ)求a的值;(Ⅱ)设b>0,若函数f(x)在区间[-b,b]上最大值与最小值的差为b,求b的值.-数学

题目简介

已知函数f(x)=|x|•(x+a)(a∈R)是奇函数.(Ⅰ)求a的值;(Ⅱ)设b>0,若函数f(x)在区间[-b,b]上最大值与最小值的差为b,求b的值.-数学

题目详情

已知函数f(x)=|x|•(x+a)(a∈R)是奇函数.
(Ⅰ)求a的值;
(Ⅱ)设b>0,若函数f(x)在区间[-b,b]上最大值与最小值的差为b,求b的值.
题型:解答题难度:中档来源:不详

答案

(I)∵函数f(x)=|x|•(x+a)(a∈R)是奇函数
∴f(0)=0,
∴a=0.
(II)函数f(x)=|x|•x(a∈R)在区间[-b,b]上增函数,
函数f(x)在区间[-b,b]上最大值与最小值分别为:b3,-b3,
∴b3+b3=b.
∴b=
2
2

更多内容推荐