已f(x)=13x3+ax2+89x+bg(x)=13x3+m2x-23m+1,且函数f(x)在x=23处取得极值2081.(I)求f(x)的解析式与单调区间;(Ⅱ)是否存在实数m,对任意的x1∈[-

题目简介

已f(x)=13x3+ax2+89x+bg(x)=13x3+m2x-23m+1,且函数f(x)在x=23处取得极值2081.(I)求f(x)的解析式与单调区间;(Ⅱ)是否存在实数m,对任意的x1∈[-

题目详情

已f(x)=
1
3
x3+ax2+
8
9
x+bg(x)=
1
3
x3+m2x-
2
3
m+1,且函数f(x)在x=
2
3
处取得极值
20
81

(I)求f(x)的解析式与单调区间;
(Ⅱ)是否存在实数m,对任意的x1∈[-1,2],都存在x0∈[0,1],使得g(x0)=3f(x1)成立?若存在,求出实数m的取值范围;若不存在,说明理由.
题型:解答题难度:中档来源:不详

答案

(I)f′(x)=x2+2ax+class="stub"8
9
f′(class="stub"2
3
)=class="stub"4
9
+class="stub"4
3
a+class="stub"8
9
=0
得a=-1,
f(class="stub"2
3
)=class="stub"20
81
,b=0,则 f(x)=class="stub"1
3
x3-x2+class="stub"8
9
x

f′(x)=x2-2x+class="stub"8
9
令f′(x)>0得x>class="stub"4
3
或x<class="stub"2
3

f′(x)<0得class="stub"2
3
<x<class="stub"4
3

f(x)的递增区间为(-∞,class="stub"2
3
),(class="stub"4
3
,+∞)
; 
递减区间为(class="stub"2
3
,class="stub"4
3
)


( II)由(1)得
   x-1(-1,class="stub"2
3
class="stub"2
3
class="stub"2
3
class="stub"4
3
class="stub"4
3
class="stub"4
3
,2)
2
f′(x)+0-0+
f(x)-class="stub"20
9
class="stub"20
81
class="stub"16
81
class="stub"4
9
所以当x1∈[1,2]时,-class="stub"20
9
≤f(x1)≤class="stub"4
9
-class="stub"20
3
≤3f(x1)≤class="stub"4
3
…(10分)
假设对任意的x1∈[-1,2]时都存在x0∈[0,1]时使得g(x0)=3f(x1)成立,
设g(x0)的最大值为T,最小值为t,则要求T≥class="stub"4
3
t≤-class="stub"20
3

又g'(x)=x2+m2,所以当x0∈[0,1]时时T=g(1)=class="stub"1
3
+m2-class="stub"2
3
m+1
≥class="stub"4
3
m≥class="stub"2
3
,或m≤0

t=g(0)=-class="stub"2
3
m+1≤-class="stub"20
3
m≥class="stub"23
2

综上,m≥class="stub"23
2

更多内容推荐