(1)求证:函数f(x)=x+3x+1在区间(-1,+∞)上是单调减函数;(2)写出函数f(x)=x+1x+3的单调区间;(3)讨论函数f(x)=x+ax+2在区间(-2,+∞)上的单调性.-数学

题目简介

(1)求证:函数f(x)=x+3x+1在区间(-1,+∞)上是单调减函数;(2)写出函数f(x)=x+1x+3的单调区间;(3)讨论函数f(x)=x+ax+2在区间(-2,+∞)上的单调性.-数学

题目详情

(1)求证:函数f(x)=
x+3
x+1
在区间(-1,+∞)上是单调减函数;
(2)写出函数f(x)=
x+1
x+3
的单调区间;
(3)讨论函数f(x)=
x+a
x+2
在区间(-2,+∞)上的单调性.
题型:解答题难度:中档来源:不详

答案

(1)证明:任取x1>x2>-1,则f(x1)-f(x2)=
x1+3
x1+1
-
x2+3
x2+1

=
(x1+3)(x2+1)-(x2+3)(x1+1)   
(x1+1)(x2+1) 
=
2(x2-x1
(x1+1)(x2+1) 

∵x1>x2>-1,∴x1+1>0,x2+1>0;x2-x1<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴函数f(x)=class="stub"x+3
x+1
在区间(-1,+∞)上是单调减函数.
(2)f(x)=class="stub"x+1
x+3
=1-class="stub"2
x+3

∴函数的定义域是(-∞,-3)∪(-3,+∞),
则函数的单调增区间(-∞,-3),(-3,+∞).
(3)f(x)=class="stub"x+a
x+2
=1+class="stub"a-2
x+2

当a>2时,此函数在区间(-2,+∞)上单调递减,
当a=2时,无单调性;当a<2时,此函数在区间(-2,+∞)上单调递增.

更多内容推荐